RAWING NO.	SHEET	DESCRIPTION
RG3083-A	S0.1	INDEX TO BRIDGE DRAWINGS
RG3083-B	S0.2	STRUCTURAL GENERAL NOTES
RG3083-C	S0.3	QUANTITY SCHEDULE
RG3083-D	S0.4	EXISTING BRIDGE DEMOLITION PLAN
RG3083-E	S0.5	EXISTING BRIDGE ABUTMENT ELEVATIONS
RG3083-F	S1.1	BRIDGE LAYOUT PLAN
RG3083-G	S1.2	BRIDGE FOUNDATION PLAN
RG3083-H	S1.3	BRIDGE ABUTMENT PLAN
RG3083-I	S1.4	BRIDGE DECK FRAMING PLAN
RG3083-J	S2.1	LONGITUDINAL SECTION
RG3083-K	S2.2	TYPICAL CROSS SECTION
RG3083-L	S3.1	ABUTMENT NO. 1 ELEVATION
RG3083-M	S3.2	ABUTMENT NO. 2 ELEVATION
RG3083-N	S3.3	ABUTMENT NO. 1 DETAIL
RG3083-O	S3.4	ABUTMENT NO. 2 DETAIL
RG3083-P	S3.5	GRS ABUTMENT DETAILS - 2
RG3083-Q	S3.6	TYPICAL GRS ABUTMENT DETAILS
RG3083-R	S4.1	PRESTRESSED PLANK
RG3083-S	S4.2	PLANK SECTIONS
RG3083-T	S5.1	GUARDRAIL DETAILS
RG3083-U	S5.2	RAILING SECTION - 1
RG3083-V	S5.3	RAILING SECTION - 2
RG3083-W	S6.1	TYPICAL APPROACH SLAB SECTION
RG3083-X	S7.1	BYPASS BRIDGE FOUNDATION PLAN
RG3083-Y	S7.2	BYPASS BRIDGE ABUTMENT ELEVATIONS
RG3083-Z	S7.3	BYPASS BRIDGE ABUTMENT SECTION

NANAHU CONSTRUCTION AND CONCRETE PLACEMENT SEQUENCE:

- 1. Abutment 2 Ecoblock Cap
- 2. Cantilever Beam Footing
- 3. Plank Seats and 6" Slab-On-Grade
- 4. Bridge Deck
- 5. Approach Slab
- 6. Barrier Railing (Mauka Abutment 2 and Makai Abutment 1)
- 7. Barrier Railing (Mauka Abutment 1 and Makai Abutment 2)
- s. Ena Pos

STATE	PROJECT	SHEET NO.	
НІ	HI STP SR 83(1) & (2)	S0.1	

THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

April 30, 2022
SIGNATURE EXPIRATION DATE OF THE LICENSE

THESE PLANS HAVE BEEN PREPARED UTILIZING
INFORMATION PROVIDED BY THE PROJECT
CONTRACTOR. THE UPDATED CONSTRUCTION
INFORMATION DEPICTED HEREIN HAS NOT BEEN
VERIFIED FOR ACCURACY AND COMPLETENESS. NO
REPRESENTATION IS BEING MADE TO ITS VALIDITY.

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

NANAHU (HOOLAPA) STREAM BRIDGE
KAMEHAMEHA HIGHWAY
HONOLULU COUNTY, HAWAII

INDE TO BRIDGE DRA INGS

NO.	DATE	BY	REVISIONS	NO.	DATE	ВҮ	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	МН		МН	1 of 50	NOVEMBER 2018	RG3083-A

GENERAL:

- A. Design standards: AASHTO LRFD Bridge Design Specification, 7th Edition, 2014 as amended by State of Hawaii Department of Transportation Highways Division Design Criteria for Bridges and Structures, August 8, 2014.
- B. The Contractor shall compare all the contract documents with each other and report in writing to the Engineer all inconsistencies and omissions.
- C. The contractor shall take field measurements and verify field conditions and shall compare such field measurements and conditions with the drawings. Report in writing to the Engineer all inconsistencies and omissions.
- D. The contractor shall be responsible for coordinating the work of all trades.
- E. The contractor shall be responsible for means and methods of construction, workmanship and job safety.
- F. The contractor shall provide temporary shoring and bracing as required for stability of structural members and systems.
- G. Construction loading shall not exceed design live load unless special shoring is provided. Permitted construction loads shall be properly reduced in areas where the structure has not attained full design strength.
- H. The contractor shall be responsible for protection of the adjacent properties, structures, streets and utilities during the construction period. Any damaged or deteriorated property shall be restored to the condition prior to the beginning of work or better at no cost to the state.
- Details noted as typical on the structural drawings shall apply in all conditions unless specifically shown or noted otherwise.

DESIGN CRITERIA:

- A. Live loads
 - 1. Vehicular: HL-93
- 2. Bridge railing: in accordance with AASHTO TL-3
- B. Lateral loads
 - 1. Seismic
 - a. Spectral response acceleration coefficients
 - *i)* Short period, s₅: 0.363g
 - ii) 1-sec period, s_1 : 0.099g
 - b. Site Class: D c. Seismic Zone: 2
- C. Soils
 - 1. Strength limit state bearing capacity
 - a. GRS abutments and approach slabs: 6,100 psf
 - b. Bypass bridge abutments: 4,000 psf
 - 2. Earth pressure
 - a. Active (level backfill):
 - i) Unrestrained 53 pcf
 - *ii)* Restrained: 74 pcf b. Passive:
 - i) Strength limit state: 94 pcf
 - ii) Extreme limit state: 188 pcf
 - 3. Coefficient of friction strength limit state: 0.44
- 4. Coefficient of friction extreme event limit state: 0.55
 D. Future wearing surface (curb to curb): 25 psf
- E. Future utility line each side of bridge: 150 plf

FOUNDATION:

- A. Foundation design is based on the Geotechnical Exploration and Evaluation Report, dated August 2019.
- B. Contractor shall provide de-watering of excavated areas, as required.
- Footings shall bear on undisturbed in-situ firm soils bottom of footings shall be compacted to provide a relatively firm and smooth bearing surface prior to placement of reinforcing steel and concrete. If soft and/or loose materials are encountered at the bottom of footing excavations, they shall be over-excavated to expose the underlying firm materials. The over-excavated area shall be backfilled with select granular material compacted to a minimum of 95% relative compaction or the footing bottom may be extended down to the underlying competent material. Contractor may substitute flowable concrete or the granular material upon approval from the Engineer.
- D. Excavations for footings shall be approved by the Geotechnical Engineer of Record prior to placement of concrete and reinforcing.
- E. Engineered fill and backfill shall be in accordance with FP-14 and associated SCR's.
- F. Fill should be moisture conditioned to within two percent of the optimum moisture content and placed in horizontal lifts not to exceed six inches. Fill shall be compacted to minimum 95%relative density as measured by AASHTO T180.

CONCRETE:

- A. Concrete construction shall conform to the FP-14 Specifications and associated SCR's.
- B. Concrete shall be normal weight hard rock concrete and shall have the following minimum 28 day compressive strength or comply with class of concrete compressive strength listed in the FP-14 Specifications:

1.	Pre-stressed piles	6000 psi
2.	Pre-stressed planks	8000 psi

- Pre-stressed planks 8000 psi
 Abutment footings and pile caps Class A
- 4. Slab topping, approach slabs, and railings Class A
- 5. Abutment walls and wing walls Class A
 6. All other concrete Class A
- C. Concrete delivery tickets shall record all free water in the mix at batching plant, added for consistency by driver, and any additional request by contractor up to the maximum amount allowed by the mix design.
- D. All inserts, anchor bolts, plates, and other items to be cast in the concrete shall be hot-dipped galvanized according to ASTM A153 unless otherwise noted.
- E. Reinforcing bars, anchor bolts, inserts, and other items to be cast in the concrete shall be secured in position prior to placement of concrete.
- F. Conduits, pipes, and sleeves passing through a slab or footing that do not conform to typical details shall be located and the proposed construction detail submitted to the Engineer for approval.
- G. Conduits, pipes, and sleeves embedded within a slab or wall (other than those merely passing through) shall be:
 - No larger in outside dimensions than one third the overall slab or wall thickness in which they are embedded.
 - 2. Placed in the middle one third of slab or wall thickness
 - 3. Spaced no closer than three diameters or widths on center.
- H. Conduits, pipes, and sleeves shall not be placed through or embedded in a beam unless specifically detailed.

- The contractor shall locate construction joints not shown on the drawings, so as not to impair the strength of the structure and to minimize shrinkage stresses. Submit proposed locations of construction joints to the Engineer for approval.
- J. Non-shrink grout shall be a premixed non-metallic formula, shall be capable of developing a minimum compressive strength of 5,000 psi in 3 days and 8,900 psi in 28 days, and shall contain at least 10 grams of migrating amine carboxylate corrosion inhibitor when grout is in contact with steel appurtenances. Precast plank shear keys will not require corrosion inhibitor.
- K. Joint filler shall conform to FP-14 section 712.01(b).
- L. A shrinkage reducing admixture conforming to SCR section 711.03(b) shall be included in the concrete mix for all cast-in-place concrete.
- M. A corrosion inhibiting admixture conforming to SCR section 711.03(a) shall be included in the concrete mix for all concrete.
- N. Reinforcing fibers conforming to SCR section 725.17(b) shall be included in the concrete mix for members as specified in SCR section 552.03.

MASONRY:

- A. Concrete masonry units shall conform to ASTM C90 for normal weight load-bearing concrete masonry units with a unit compressive strength of 3050 psi.
- B. Second-hand masonry units shall not be reused unless they conform to the requirements of new units. The units shall be of whole, sound materials and free from cracks and other defects that will interfere with proper laying and use. Old mortar shall be cleaned from the unit before reuse.
- C. All cells and bond courses with reinforcement and inserts shall be concrete filled.
- D. When concrete filling is stopped for one hour or longer, horizontal construction joints shall be formed by stopping the concrete pour 1 1/2 inches below the top of the uppermost unit.
- E. Walls shall be constructed in conventional running bond, unless otherwise noted.
- F. Open-ended blocks shall not be substituted for standard concrete masonry units.

THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

April 30, 2022
SIGNATURE EXPIRATION DATE OF THE LICENSE

THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.

STATE

ΗΙ

PROJECT

HI STP SR 83(1) & (2)

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

NANAHU (HOOLAPA) STREAM BRIDGE KAMEHAMEHA HIGHWAY

HONOLULU COUNTY, HAWAII

STRUCTURAL GENERAL NOTES

NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	МН		MLI	2 of 50	NOVEMBER 2018	RG3083-B
								DL & DC	CADD	14111		IVIII	2 01 50	NOVEWBER 2016	КОЗООЗ В

SHEET

NO.

S0.2

REINFORCING STEEL:

- A. Reinforcing steel shall be deformed bars conforming to AASHTO M31, Grade 60, unless otherwise noted.
- B. Low alloy steel deformed bars shall conform to FP-14 section 709.01(i), Grade 60, unless otherwise noted.
- C. Clear concrete cover for reinforcing bars shall be as follows, unless otherwise noted:
 - 1. Footings, slabs, etc. cast against earth: 3"
 - 2. Footings, walls, grade beams, etc. formed and exposed to earth or weather: 2"
 - 3. Bridge deck top reinforcement: 2-1/2"
 - 4. Other: 2"
- D. Reinforcing steel shall be spliced where indicated on plans. Provide lap splice length per typical details and schedule, unless otherwise noted.
- E. Mechanical splice connectors shall develop in tension 125 percent of the specified minimum yield strength of reinforcing bars.
- F. Provide standard hooks conforming to ACI SP-66.
- G. Fabricate reinforcing bars according to ACI SP-66, ACI Detailing Manual.
- H. Reinforcing steel shall be placed and secured in conformance with crsi manual of standard practice with placement tolerances per ACI standard 117.

STRUCTURAL STEEL:

- A. Fabrication and erection of structural steel shall conform to the american institute of steel construction manual of steel construction, thirteenth edition.
- B. Structural steel shall conform to ASTM A36 unless otherwise noted.
- C. Steel wide flange sections shall conform to ASTM A992.
- D. Plates and bars shall conform to ASTM A36.
- E. Welds and welding procedures shall conform to the structural welding code AWS D1.1 of the american welding society.
- F. Welding shall be performed by welders prequalified for welding procedures to be used.
- G. Welding electrodes shall be E70xx for carbon steel.
- H. High-strength bolts shall conform to ASTM A325, type N. Installation shall be assured by any of the following methods:
 - 1. Turn of nut method
 - 2. Direct tension indicator
 - 3. Calibrated wrench
 - 4. Alternative design bolt
- All anchor bolts, plates, and other items to be cast in concrete shall be hot-dip galvanized according to ASTM A153 unless otherwise noted.
- J. Carbon steel bolts shall conform to ASTM A307, grade a unless otherwise noted, and shall be hot-dip galvanized according to ASTM A153.
- K. All steel shall be hot-dip galvanized after fabrication according to ASTM A123.
- L. Any damaged galvanized surface shall be repaired as follows:
 - 1. prepare surface per sspc-sp1, solvent cleaning.
 - 2. apply two coats of cold applied galvanizing compound containing 95% metallic zinc content by weight in dry film and 52% solids content by volume.
 - 3. application rate shall be 1.5 mils dry film thickness per coat.

TATE	PROJECT	SHEET NO.	
ні	HI STP SR 83(1) & (2)	S0.3	

LOAD RATING													
	Rating Factor	Distribution Factor	Load Effect	Controlling Member									
HL-93 Inventory	1.77	0.328	Positive Moment	Interior Girder									
HL-93 Operating	2.29	0.328	Positive Moment	Interior Girder									

S

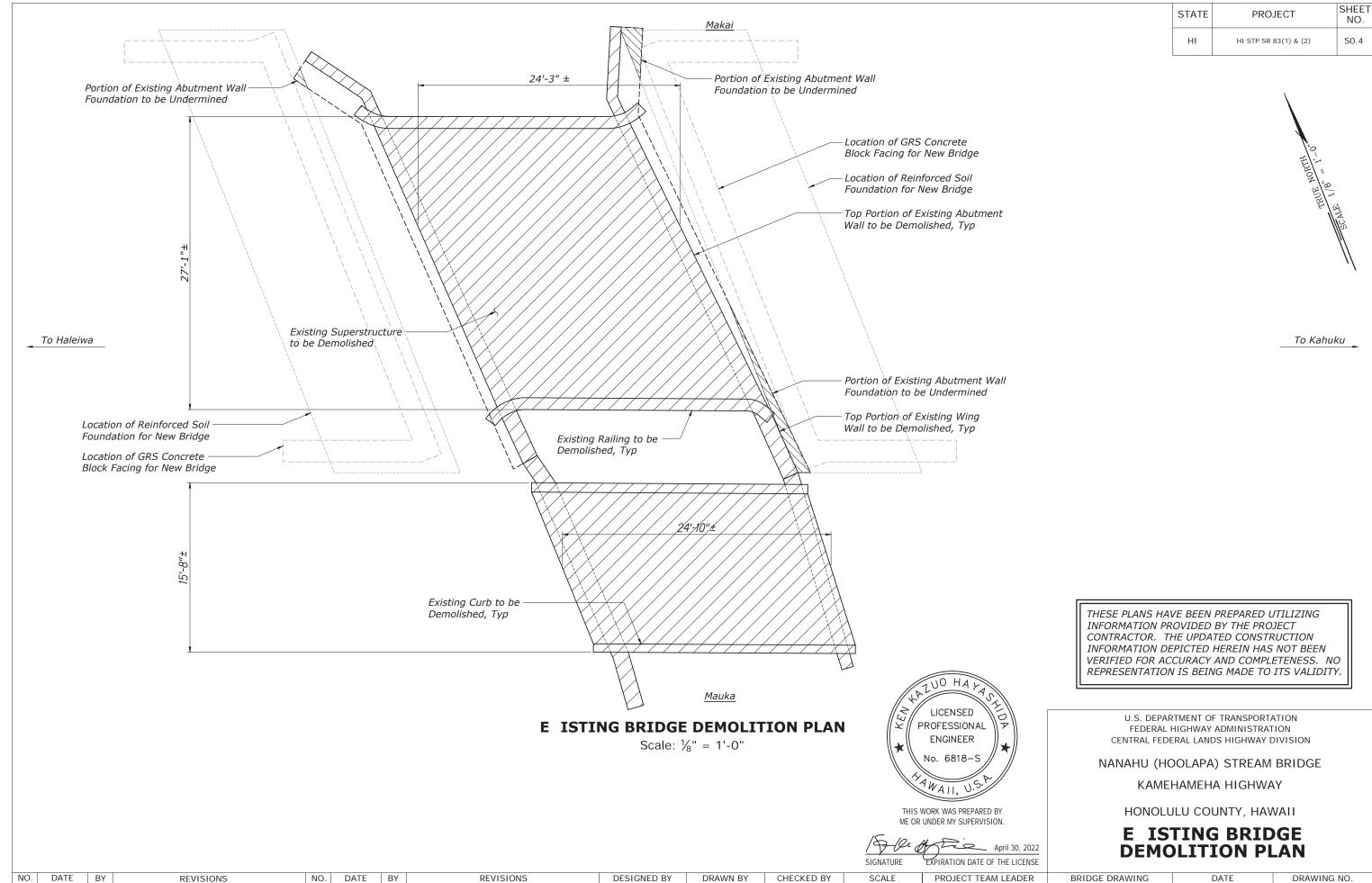
	ESTIMATE												
Item No.	Description	Quantity	Unit	Notes									
20304-1000	Removal of structures and obstructions	LPSM	LPSM	-									
20435-2000	Backfill, Granular	40	CUYD	(1)									
20720-0400	Reinforcement Geosynthetic, Type 4	2320	SQYD	-									
20801-0000	Structure excavation	840	CUYD	(2)									
20803-0000	Structure backfill (GRS)	550	CUYD	-									
55201-1500	Structure Concrete	136	CUYD	(3)									
55302-3500	Precast, prestressed concrete slab, 14" solid	500	LNFT	(4)									
55401-1000	Reinforcing steel	45400	LB	-									
55601-0500	Bridge railing, concrete	137	LNFT	-									
61707-0000	Structure Transition Railing	100	LNFT	(5)									

ESTIMATE NOTES:

- (1) Includes cost of drain pipes, geocomposite drains, aggregate base course backfill and aggregate subbase course
- (2) Includes cost of GRS backfill excavation
- (3) Includes cost of bridge deck, approach slabs
- (4) Includes cost of concrete, reinforcing steel, prestressing steel, inserts, plates, lifting devices, and other materials required for the manufacture and erection of the planks
- (5) Includes cost of furnishing and installing posts, blocks, thrie and W-beam rail elements, anchor plates, and installation hardware

THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

April 30, 2022
SIGNATURE EXPIRATION DATE OF THE LICENSE


THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

NANAHU (HOOLAPA) STREAM BRIDGE
KAMEHAMEHA HIGHWAY
HONOLULU COUNTY, HAWAII

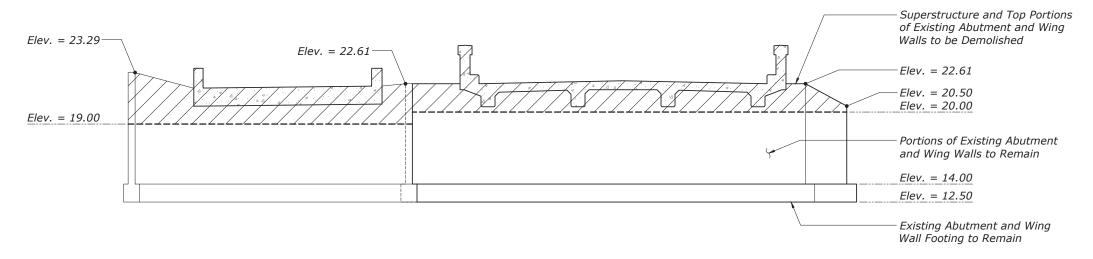
UANTIT SC EDULE

NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		МН	3 of 50	NOVEMBER 2018	RG3083-C

BL & BC

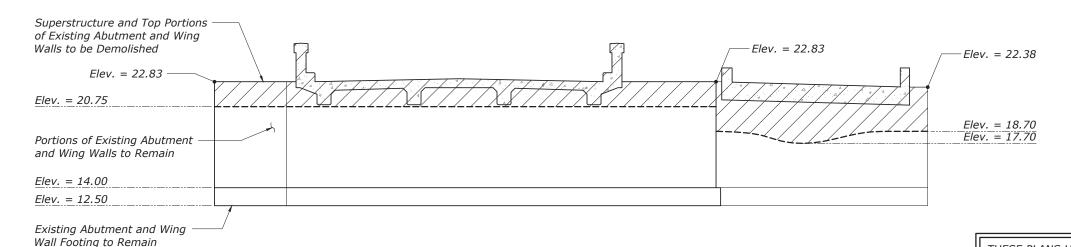
CADD

S-BUILT DRAWINGS


RG3083-D

NOVEMBER 2018

4


МН

of 50

E ISTING BRIDGE EST ABUTMENT FRONT ELEVATION

Scale: $\frac{1}{8}$ " = 1'-0"

E ISTING BRIDGE EAST ABUTMENT FRONT ELEVATION

Scale: $\frac{1}{8}$ " = 1'-0"

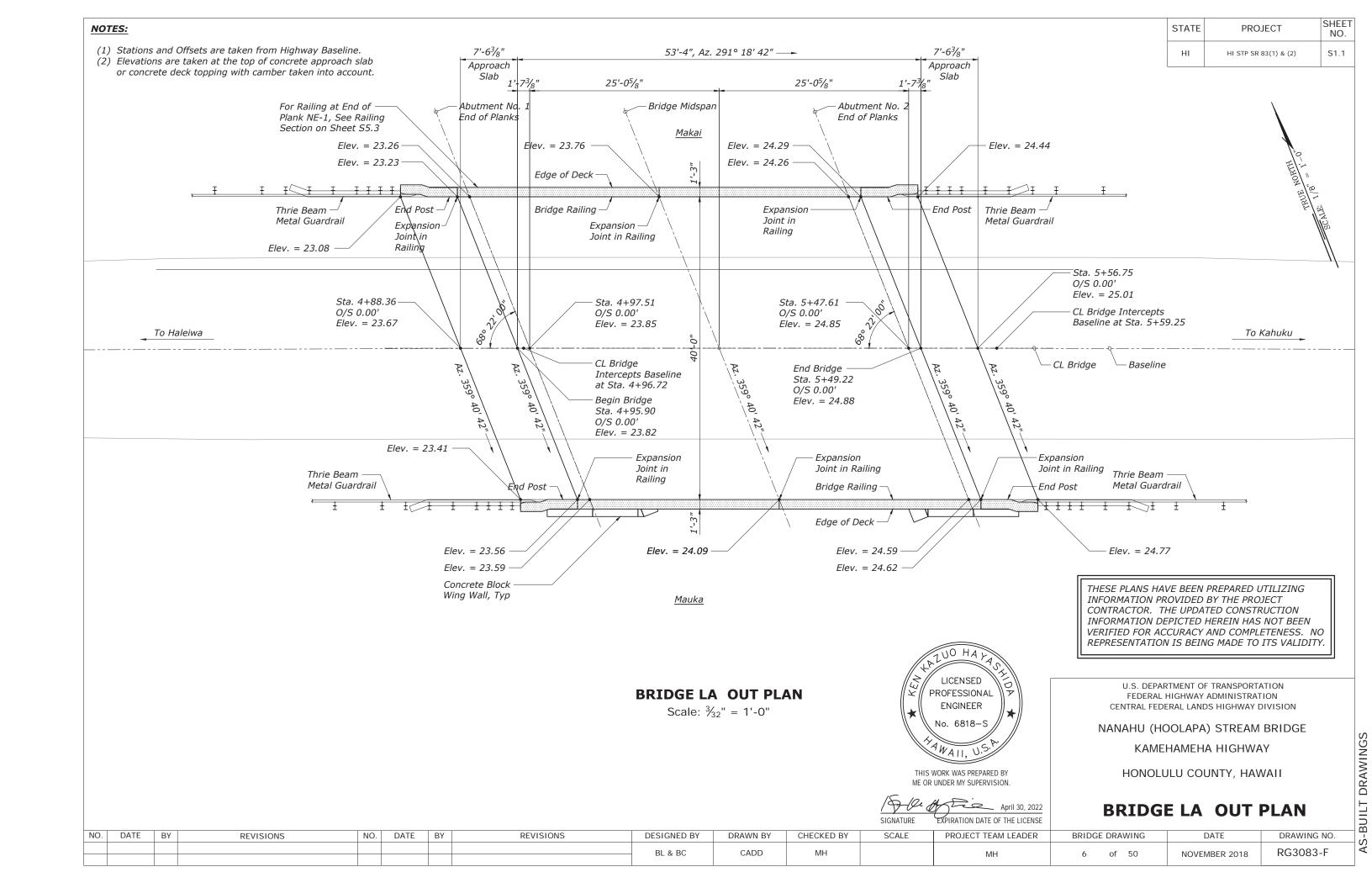
NOTES:

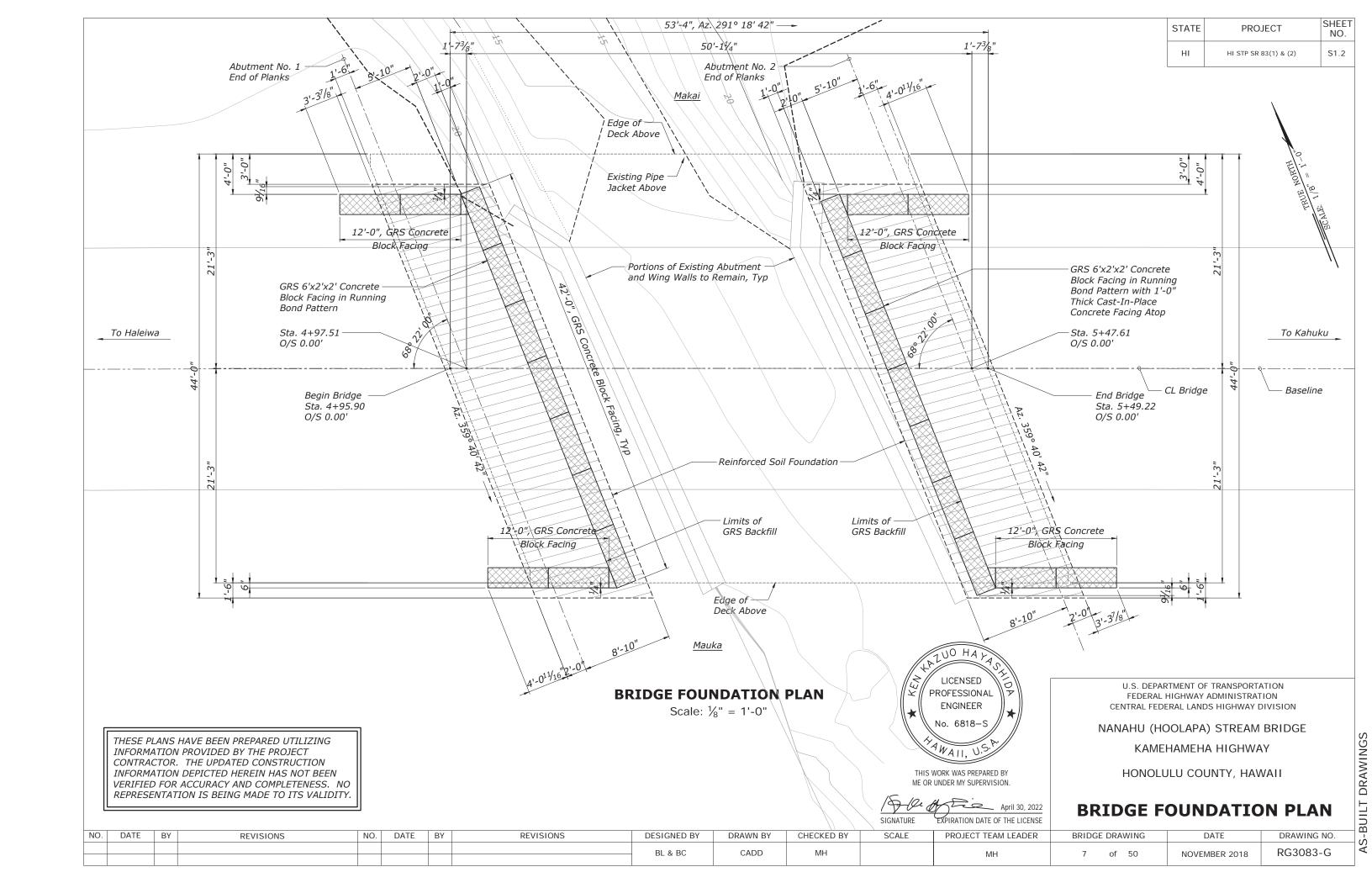
- 1. The orientations of the views are perpendicular to the baseline of the highway.
- 2. Temporary shoring shall be used as needed to maintain the integrity and stability of the existing abutment walls until the bridge concrete deck topping has been placed.

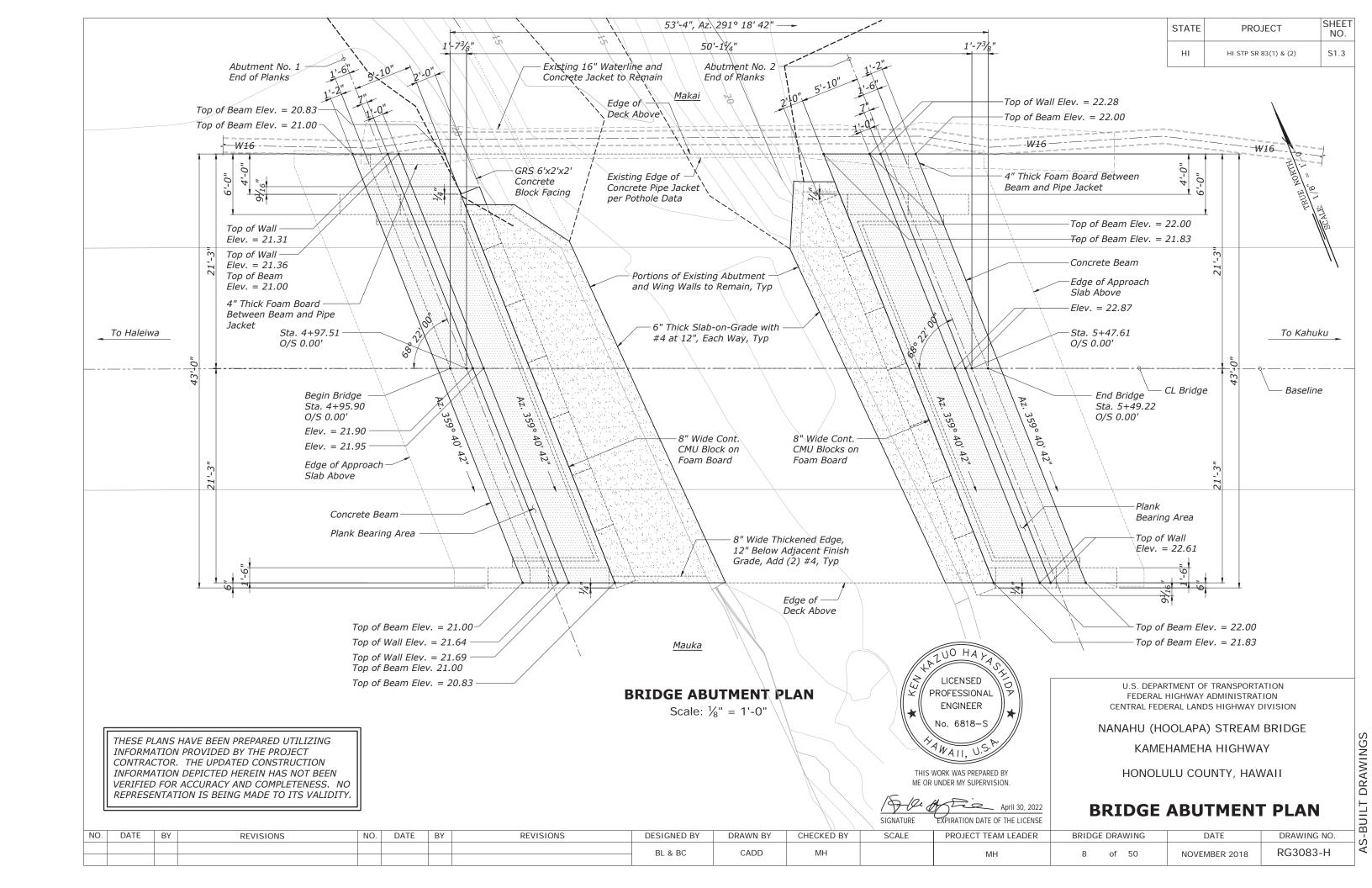
THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

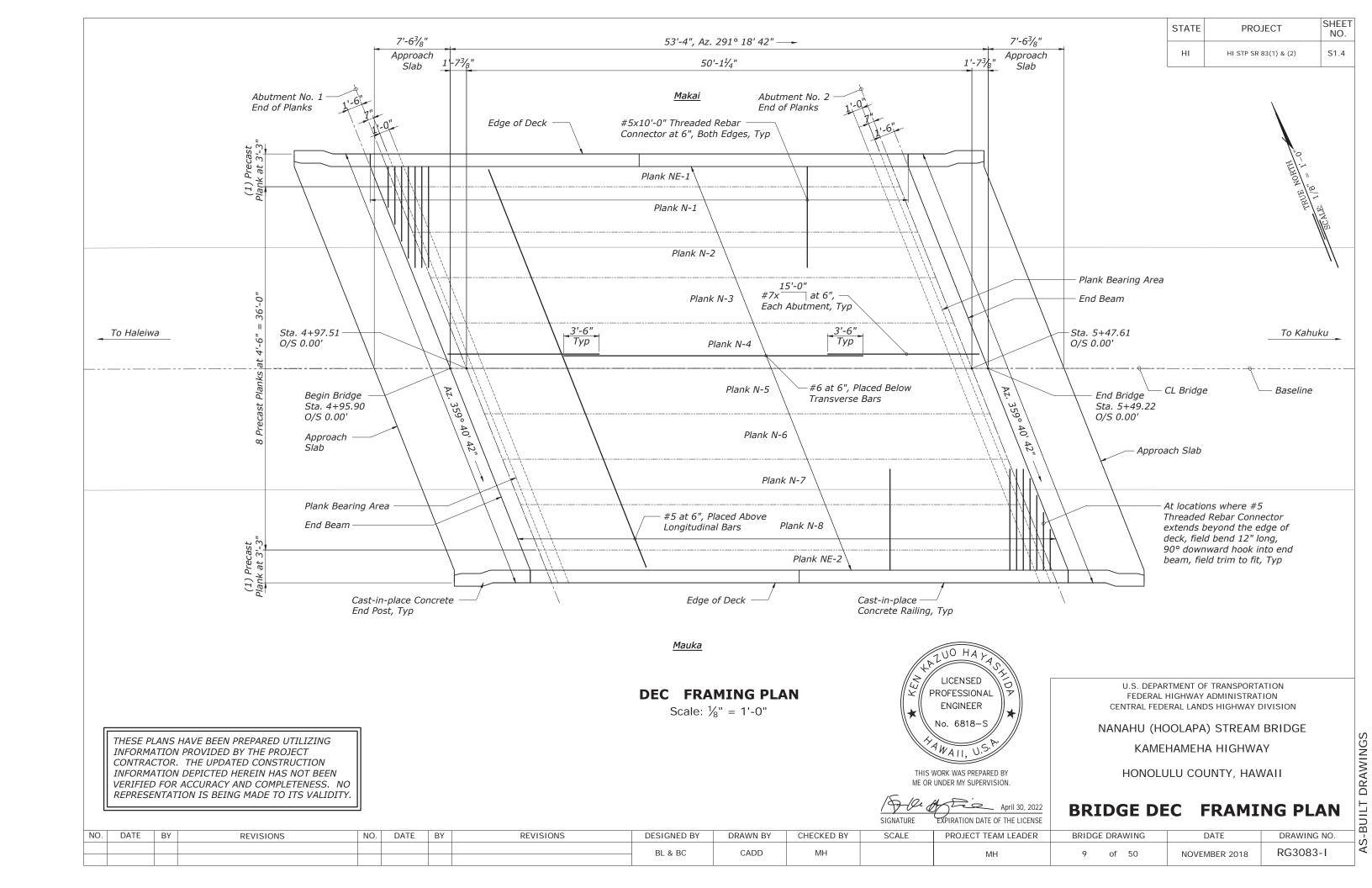
April 30, 2022
SIGNATURE EXPIRATION DATE OF THE LICENSE

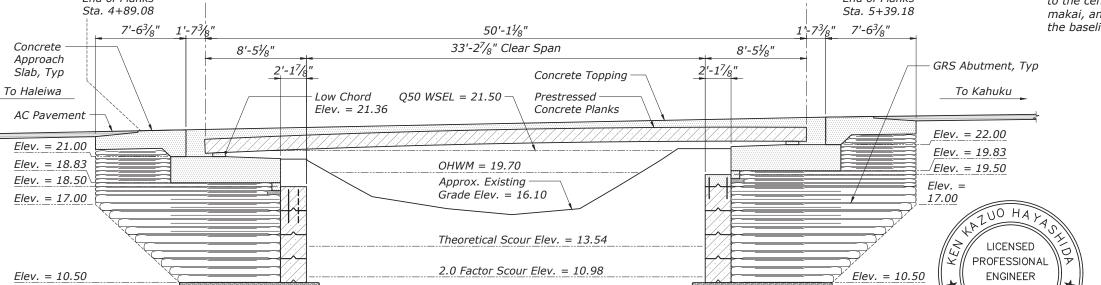
THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.


U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION


NANAHU (HOOLAPA) STREAM BRIDGE KAMEHAMEHA HIGHWAY


HONOLULU COUNTY, HAWAII


E ISTING BRIDGE ABUTMENT ELEVATIONS


NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		MLI	5 of 50	NOVEMBER 2018	RG3083-E
								DL & DC	CADD	IVIII		IVID	5 01 50	NOVEWIBER 2016	1103003 E

BRIDGE LONGITUDINAL SECTION AT NORT EDGE OF DEC

Elev. = 9.00

Reinforced Soil Foundation,

Encapsulated Geotextile, Typ

8'-51/8"

3'-23/4"

Scale: $\frac{1}{8}$ " = 1'-0"

April 30, 2022
SIGNATURE EXPIRATION DATE OF THE LICENSE

No. 6818-S

THIS WORK WAS PREPARED BY

ME OR UNDER MY SUPERVISION.

AWAII, U

Elev. = 9.00

THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

NANAHU (HOOLAPA) STREAM BRIDGE KAMEHAMEHA HIGHWAY

HONOLULU COUNTY, HAWAII

LONGITUDINAL SECTION

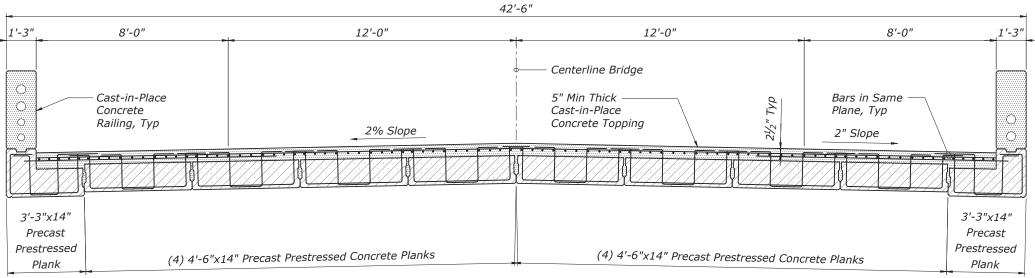
NO. DATE	BY	REVISIONS NO.	DATE	BY REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
					BL & BC	CADD	МН		МН	10 of 50	NOVEMBER 2018	RG3083-J

3'-23/4"

8'-51/8"

SHEET

NO.


S2.1

PROJECT

HI STP SR 83(1) & (2)

NOTE:

The cross section is taken at the midspan of the bridge and the oriantation of the view is perpendicular to the centerline of the bridge.

Channel Invert –

Elev, Varies

T PICAL BRIDGE CROSS SECTION

Scale: $\frac{1}{4}$ " = 1'-0"

LICENSED PROFESSIONAL ENGINEER
No. 6818-S

WAII, U.S.

THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

April 30, 2022
SIGNATURE EXPIRATION DATE OF THE LICENSE

THESE PLANS HAVE BEEN PREPARED UTILIZING
INFORMATION PROVIDED BY THE PROJECT
CONTRACTOR. THE UPDATED CONSTRUCTION
INFORMATION DEPICTED HEREIN HAS NOT BEEN
VERIFIED FOR ACCURACY AND COMPLETENESS. NO
REPRESENTATION IS BEING MADE TO ITS VALIDITY.

STATE

HI

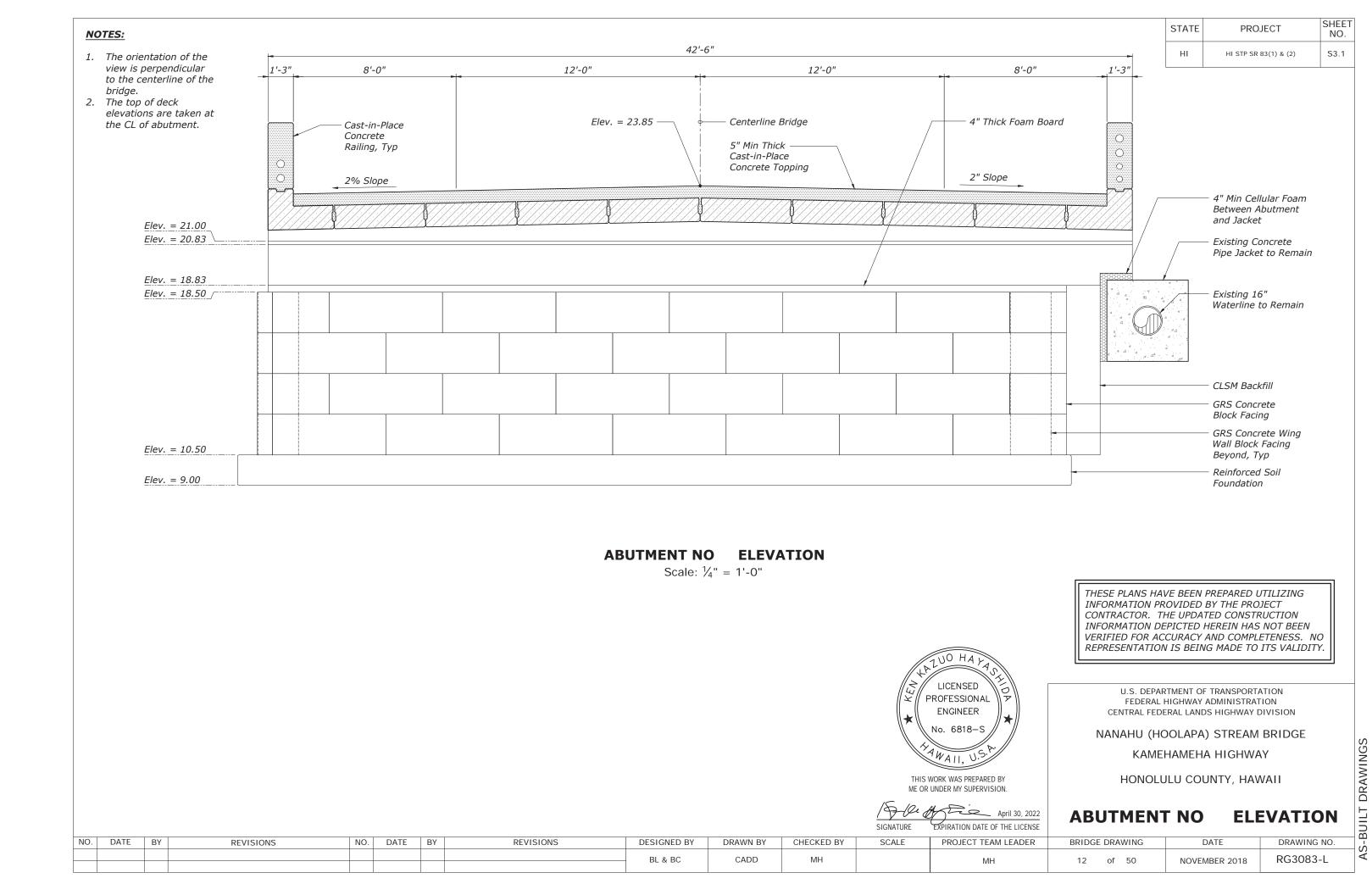
PROJECT

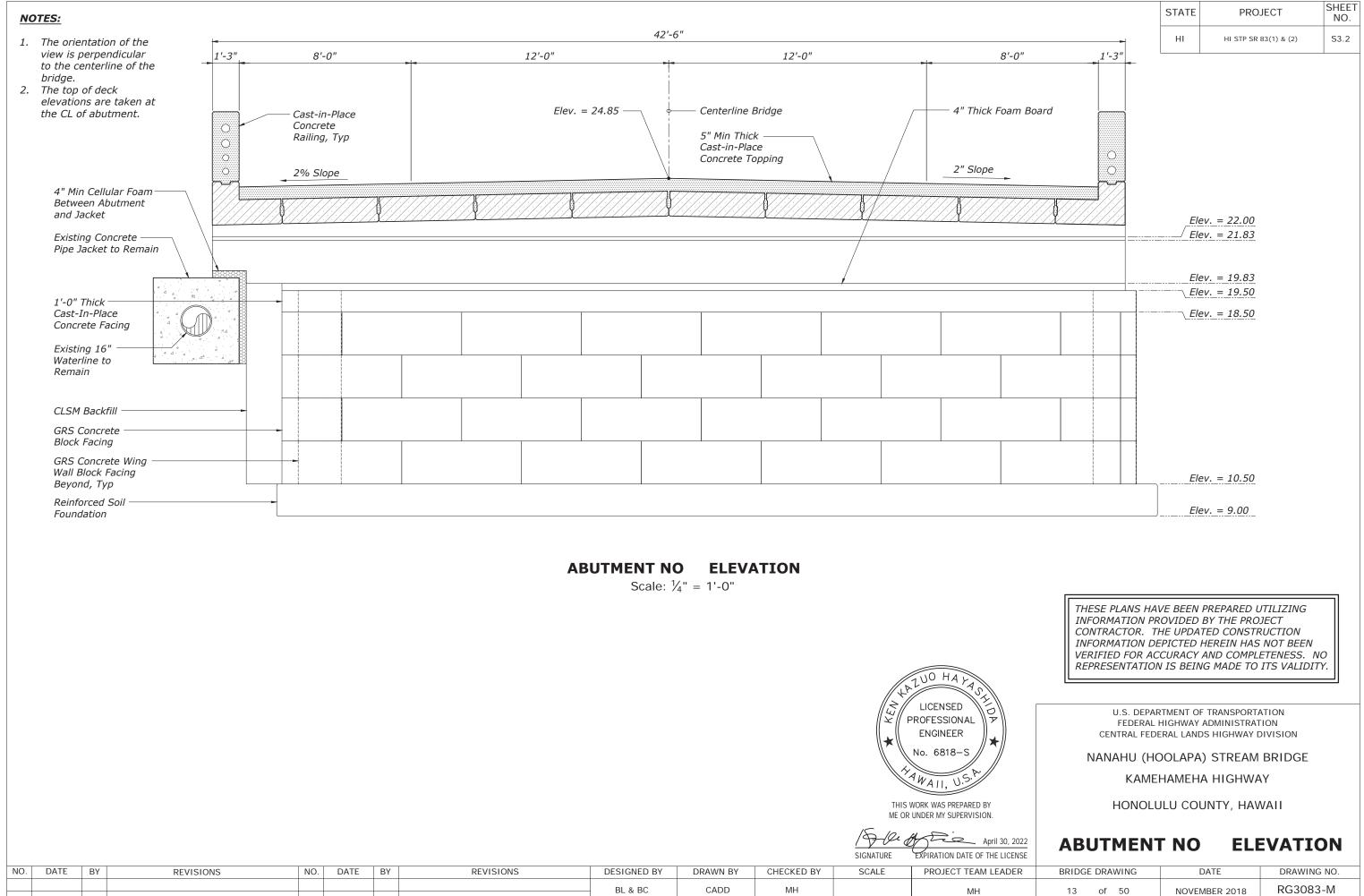
HI STP SR 83(1) & (2)

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

NANAHU (HOOLAPA) STREAM BRIDGE KAMEHAMEHA HIGHWAY

HONOLULU COUNTY, HAWAII


T PICAL CROSS SECTION


Ν	O. DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		MLI	11 of 50	NOVEMBER 2018	RG3083-K
								DE & DO	CADD	10111		IVIT	11 01 50	NOVEWIDER 2016	KOJOOJ K

SHEET

NO.


S2.2

MH

DRAWINGS

Ecoblock, Running

Bond Pattern, Typ

Scarify to a minimum depth of 6", moisture condition to approximately 2% above optimum moisture content and compact to a mimum 95% compaction

GRS Backfill Material in Accordance with Section 704.04(d), Typ

4'-0" Overlap, Typ

Longitudinal Section (Parallel to Baseline)

at 12'

(20) #8 Top, Equally Spaced and

(20) #7 Bottom, Equally Spaced (6) #5x Shear Ties at 12" -#5 Closed Stirrups and Cross

Ties at 6", Top and Bottom

Geotextile Reinforcement,

Type 4, Typ

Added Geotextile

Reinforcement Layer Between Concrete Blocks, Typ

#8 at 4", Each Side

- 1. Geotextile shall be biaxial, woven polypropylene, with a minimum ultimate tensile strength of 4,800 pounds per square foot, see FP-14 Section 714.04(c).
- Geotextile fabric wrapped lifts may be be placed directly atop each other.

Beam Seat and Bearing Bed

with Section 704.04(d), Typ

in 8" Max Lifts, See Note 1

1:1 Slope Measured Perpendicular to Abutment

GRS Backfill Material in Accordance

Abutment Geosythetic Reinforcement

- Prepare and compact foundation soils to conform to FP-14 Section 204.
- Compact backfill to a minimum of 95 percent of the maximum dry density according to AASHTO T99 and ±2 percent of optimum moisture content. In the bearing reinforcement zone, compact to 100 percent of the maximum dry density according to AASHTO T99. Only hand-operated compaction equipment is allowed within 3 feet of the wall face. Reinforcement extends directly beneath each layer of CMU blocks, extending to 1 inch or less from the front face of the wall.
- Temporary shoring shall be used as needed to maintain the integrity and stability of the existing abutment walls until the bridge concrete deck topping has been placed.
- Slush grout shall be non-shrink grout shall be a premixed non-metallic formula, capable of developing a minimum compressive strength of 5,000 psi in 28 days, and will not require corrosion inhibitor.

ABUTMENT NO DETAIL

Scale: $\frac{3}{8}$ " = 1'-0"

CLSM Backfill

NO HA

LICENSED

PROFESSIONAL

ENGINEER

No. 6818-S

THIS WORK WAS PREPARED BY

ME OR UNDER MY SUPERVISION.

AWAII, U

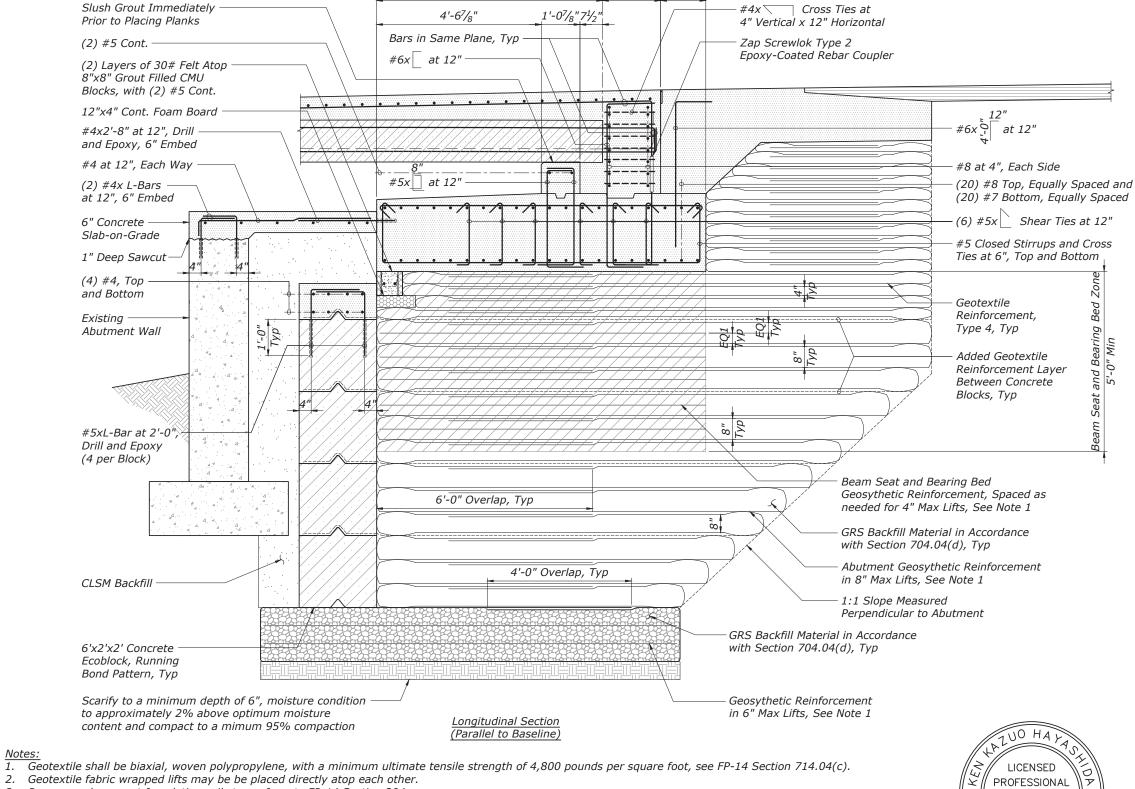
Geosythetic Reinforcement

in 6" Max Lifts, See Note 1

Existing

Abutment Wall

THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.


U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

NANAHU (HOOLAPA) STREAM BRIDGE KAMEHAMEHA HIGHWAY HONOLULU COUNTY, HAWAII

ABUTMENT NO DETAIL

NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		MH	14 of 50	NOVEMBER 2018	RG3083-N
								DE & DC	CADD	10111		IVID	14 01 50	NOVEWBER 2016	ROSCOS IV

1'-3"

- Prepare and compact foundation soils to conform to FP-14 Section 204.
- Compact backfill to a minimum of 95 percent of the maximum dry density according to AASHTO T99 and ±2 percent of optimum moisture content. In the bearing reinforcement zone, compact to 100 percent of the maximum dry density according to AASHTO T99. Only hand-operated compaction equipment is allowed within 3 feet of the wall face. Reinforcement extends directly beneath each layer of CMU blocks, extending to 1 inch or less from the front face of the wall.
- Temporary shoring shall be used as needed to maintain the integrity and stability of the existing abutment walls until the bridge concrete deck topping has been placed.

6'-31/4"

Slush grout shall be non-shrink grout shall be a premixed non-metallic formula, capable of developing a minimum compressive strength of 5,000 psi in 28 days, and will not require corrosion inhibitor.

ABUTMENT NO DETAIL

Scale: $\frac{3}{8}$ " = 1'-0"

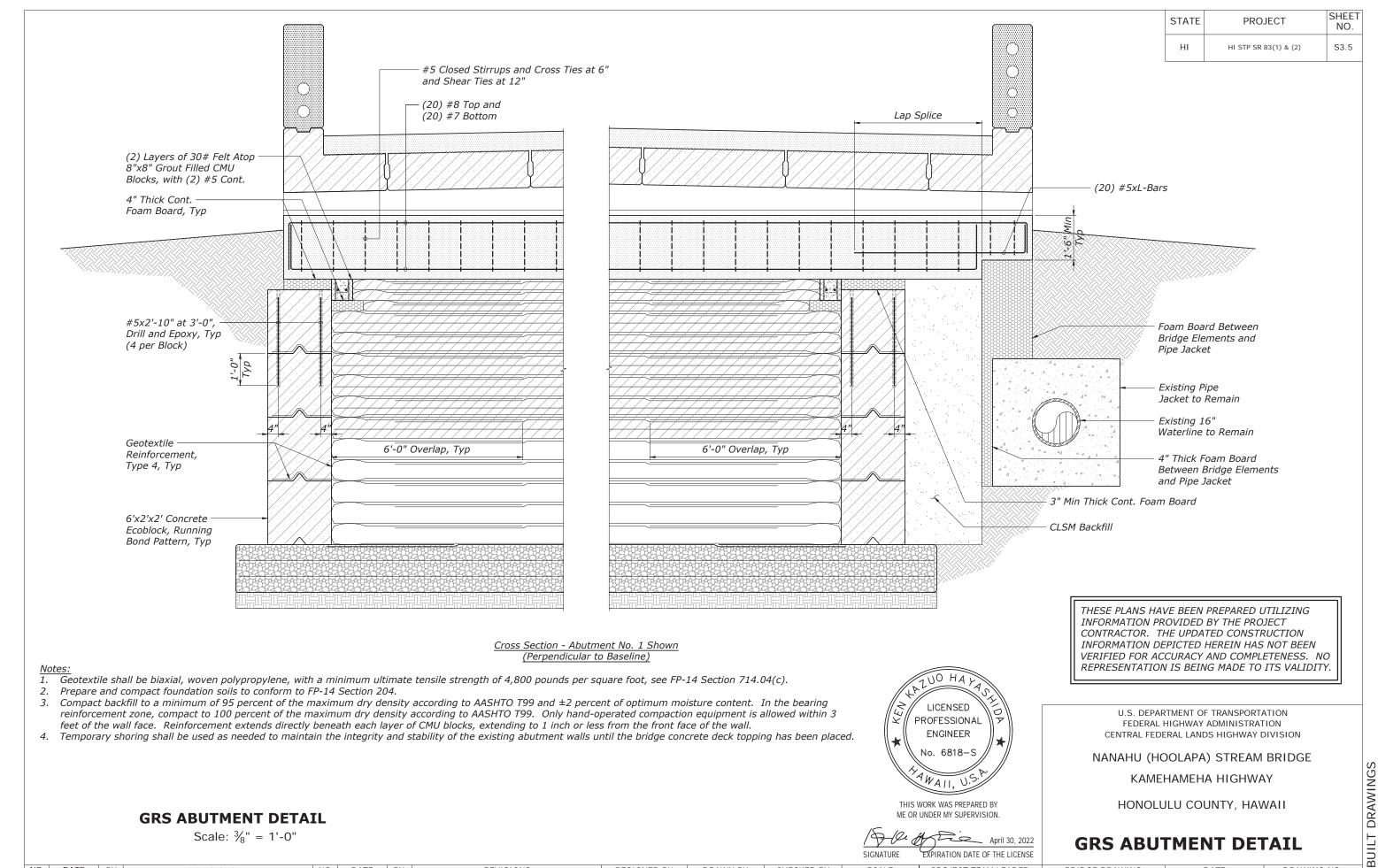
ENGINEER

No. 6818-S

THIS WORK WAS PREPARED BY

ME OR UNDER MY SUPERVISION.

AWAII, U


THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

NANAHU (HOOLAPA) STREAM BRIDGE KAMEHAMEHA HIGHWAY HONOLULU COUNTY, HAWAII

ABUTMENT NO DETAIL

NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		МН	15 of 50	NOVEMBER 2018	RG3083-O

GRS ABUTMENT DETAIL

Scale: $\frac{3}{8}$ " = 1'-0" DATE DATE REVISIONS DESIGNED BY DRAWN BY CHECKED BY PROJECT TEAM LEADER BY REVISIONS NO. BY SCALE

April 30, 2022

GRS ABUTMENT DETAIL

BRIDGE DRAWING DRAWING NO. DATE RG3083-P BL & BC CADD 16 of 50 NOVEMBER 2018 МН

6'x2'x2' Concrete Block, Typ
(3) #6 Vert. Cont.
(2) #4x L-Bars at 1'-6", Drill and Epoxy, 6" Embed (2 per Block)
Space filled with ————————————————————————————————————

CONCRETE BLOC CORNER DETAIL

Scale: $\frac{3}{8}$ " = 1'-0"

THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

NANAHU (HOOLAPA) STREAM BRIDGE KAMEHAMEHA HIGHWAY

HONOLULU COUNTY, HAWAII

T PICAL GRS ABUTMENT DETAILS

NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		MLI	17 of 50	NOVEMBED 2019	RG3083-Q
								DE & DC	CADD	17111		IVIH	17 01 50	NOVEMBER 2018	1.00000-0

Prestressed Plank Notes:

- 1. Prestressed concrete 28 day strength f'c = 8,000 psi. prestressed concrete strength at time of release fci = 6,400 psi.
- 2. Prestressing strands shall be (7) wire 0.6"Ø low relaxation steel strands (Area = 0.217 in²) conforming to ASTM A416 with an ultimate tensile strength of 270 ksi. Initial strand stress (immediately prior to release of prestress) = 0.75 f_{pu} = 202.5 ksi.
- 3. Non-prestressed reinforcing steel shall be deformed bars conforming to ASTM A615 or A706, Grade 60, unless noted otherwise.
- 4. Strand pattern shall be symmetrical about the longitudinal centerline of the plank.
- Strand release sequence shall not induce any lateral deflection of the plank.
- 6. Contractor shall submit shop drawings indicating proposed strand pattern, releasing sequence, reinforcing details and hold down device details to the engineer prior to fabrication.
- 7. During curing, care shall be taken to avoid any lateral deflection to the plank due to improper orientation. steam curing may be used to accelerate strength gain.
- 8. Lifting devices shall be placed as close as possible to the centerline of bearings of the plank. details and locations of lifting devices shall be submitted to the engineer for approval. such approval does not relieve the contractor of his responsibilities if plank is damaged due to failure of the lifting device.
- 9. $P_{(a)} = \text{effective prestress force after all losses (kips)}$
- 10. Plank stirrups shall be placed parallel to the bridge skew.
- 11. Top row of unmasked strands shall be cut flush with the face of plank.
- 12. Where vertical #5 bars in curb section at the Abutment 1 end of plank NE-1 have been inadvertently omitted, drill and epoxy #5 bars at 6". The bars on interior side shall have a minimum embedment of $12\frac{1}{2}$ " and the bars on the exterior side shall have a minimum embedment of 6".
- 13. At Abutment 1 end of Plank NE-1 and Abutment 2 end of Plank NE-2, trim edge bars as needed to maintain clearance from construction joint

Required Actions:

3³/₈" (N-1 thru N-8)

concrete

 $1\frac{7}{8}$ " (NE-1 and NÉ-2)

Estimated plank camber

before placement of deck

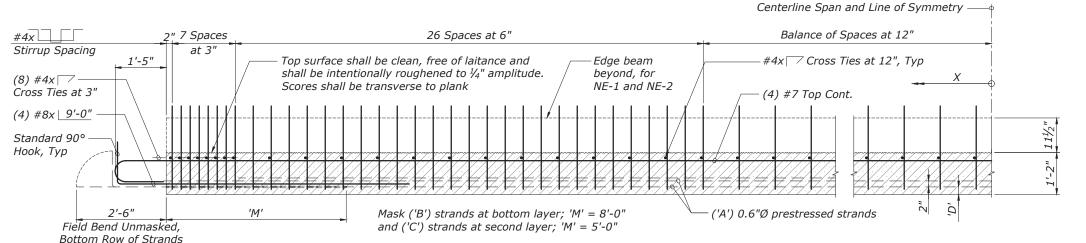
Precast slab position before

placement of deck concrete

- 1. Measure slab camber prior to setting deck forms. If the actual camber exceeds the estimated slab camber (33/8" for interior planks and 17/8" for exterior planks) by more than 1", the fillet will have to be increased by raising profile grade as directed by the owner.
- 2. Set the deck forms and camber the deck machine screed rails to offset the slab deflections $(\frac{1}{2})$ due to deck placement.
- 3. Bridge precast slab seat elevations were calculated using dead load deflections of the deck so that top of precast slab will be a minimum of 1" below bottom of deck at any point in the span, allowing for precast slab depth and slab camber tolerance.

CL Bearing

CL Span

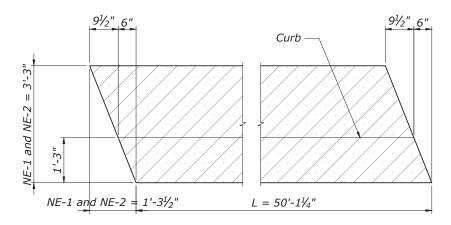

DEC FORM SETTING DIAGRAM

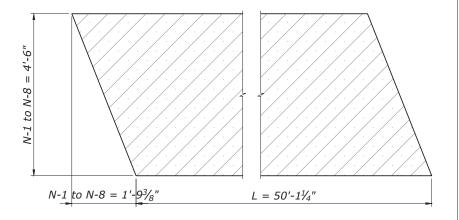
Not to Scale

Notes:

- 1. The plank lengths shown do not include changes in length increase due to elastic and time dependent shortening effects and longitudinal slope of the plank.
- 2. The unmasked strands shall have 2'-6" extension at both ends of each plank.

STATE	PROJECT	SHEET NO.	
НІ	HI STP SR 83(1) & (2)	S4.1	




T PICAL PRESTRESSED PLAN ELEVATION

Scale: $\frac{3}{8}$ " = 1'-0"

	Plank N-	Plank NE-
'A'	34	24
'B'	6	3
'C'	2	2
P _(e) [kips]	1,198	864
C.G.S. [in]	3.32	4.42
'D' [in]	2.5	2.5

Reinforcing not shown for clarity.

Deflection Equation:

 $\Delta = \frac{1}{2}$ " - $X^2(1040.8^{-1})$

Where:

CL Bearing

 $\frac{1}{2}$ " Deflection (Δ)

due to placement

of deck concrete

Final position

of precast slab

 Δ = Deflection, in inches, of slab at any point caused by the weight of deck X = Distance, in feet, measured from midspan (See diagram)

Note:

 Δ max = $\frac{1}{2}$ " at X = 0' (Midspan) Δ min = 0" at X = 22'-9 $\frac{3}{4}$ " (CL Bearing)

THESE PLANS HAVE BEEN PREPARED UTILIZING
INFORMATION PROVIDED BY THE PROJECT
CONTRACTOR. THE UPDATED CONSTRUCTION
INFORMATION DEPICTED HEREIN HAS NOT BEEN
VERIFIED FOR ACCURACY AND COMPLETENESS. NO
REPRESENTATION IS BEING MADE TO ITS VALIDITY.

T PICAL PRESTRESSED PLAN PLAN

Scale: $\frac{3}{8}$ " = 1'-0"

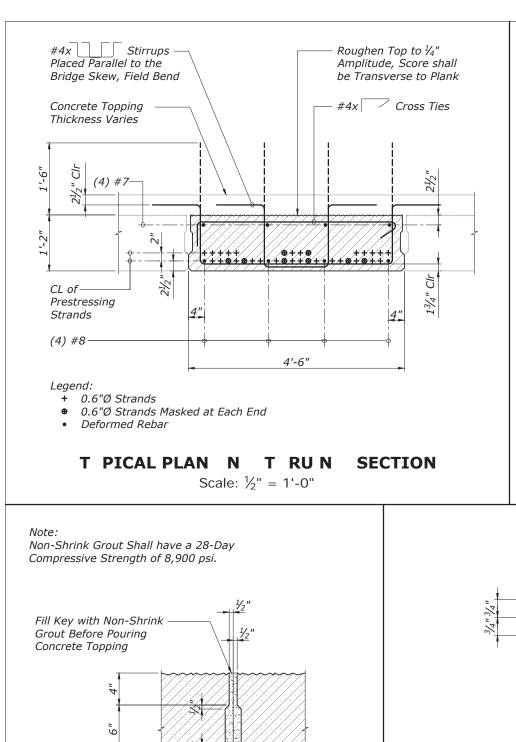
LICENSED
PROFESSIONAL
ENGINEER
No. 6818-S

THIS WORK WAS PREPARED BY

FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

U.S. DEPARTMENT OF TRANSPORTATION

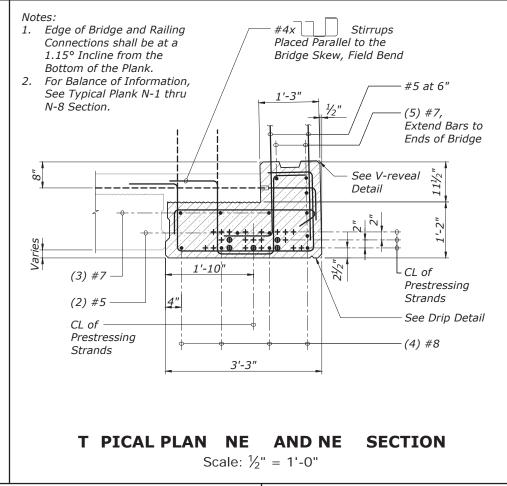
NANAHU (HOOLAPA) STREAM BRIDGE KAMEHAMEHA HIGHWAY


HONOLULU COUNTY, HAWAII

April 30, 2022
SIGNATURE EXPIRATION DATE OF THE LICENSE

ME OR UNDER MY SUPERVISION.

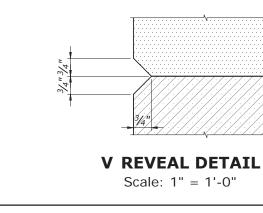
PRESTRESSED PLAN

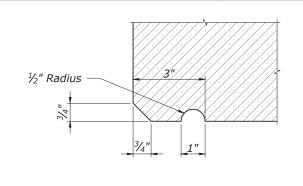

NO. DAT	E BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
							BL & BC	CADD	MH		NALI	19 of 50	NOVEMBER 2018	RG3083-R
							DE & DO	CADD	IVIII		IVITI	16 01 50	NOVEWIBER 2016	Resous R

3/4" Chamfer

E DETAIL

Scale: 1" = 1'-0"




STATE

HI

PROJECT

HI STP SR 83(1) & (2)

DRIP DETAILScale: 1" = 1'-0"

T
T/3 T/3 T/3
Slope 1/4:1, Typ

CURB E DETAIL

Scale: $\frac{1}{2}$ " = 1'-0"

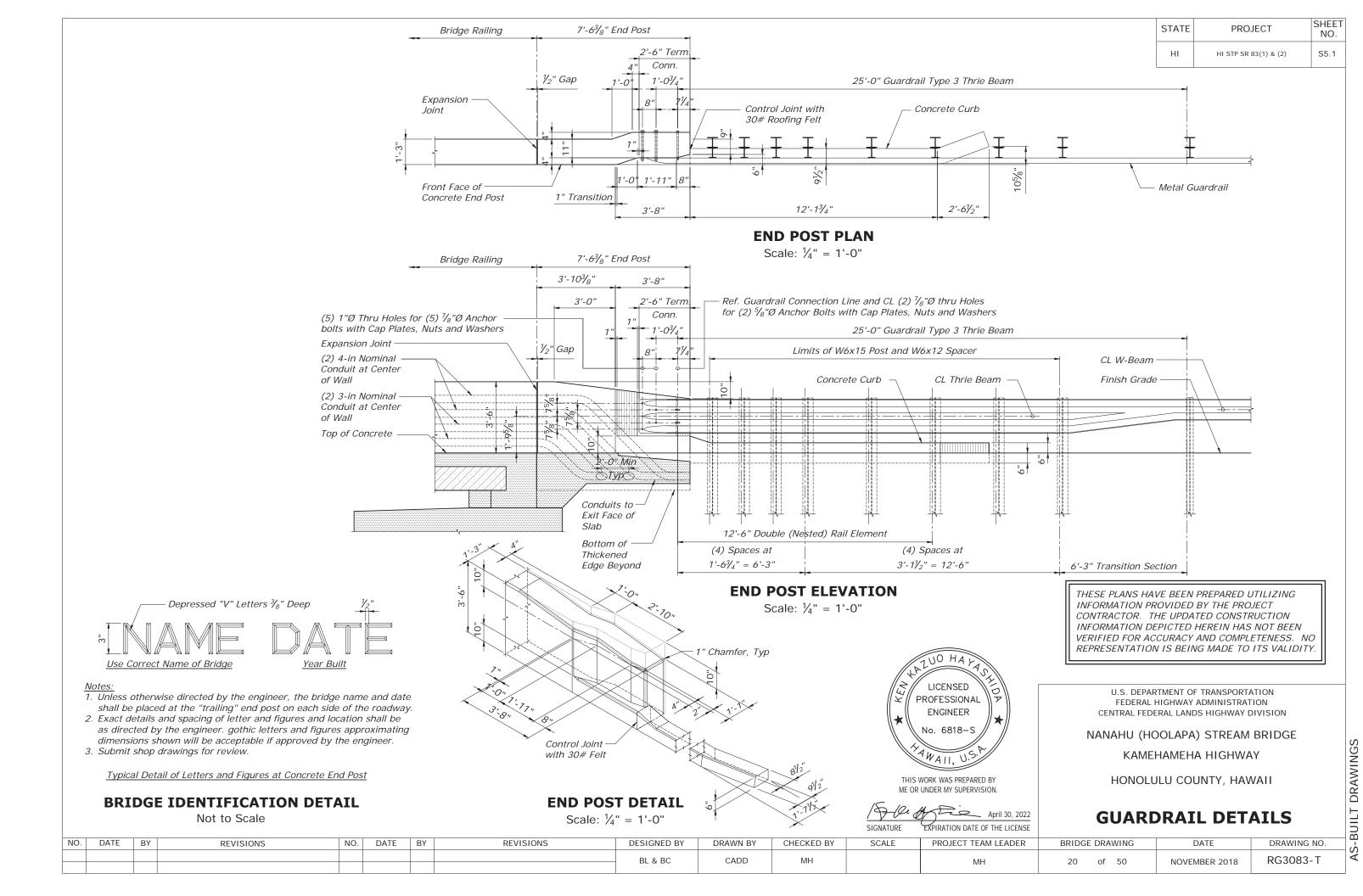
THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

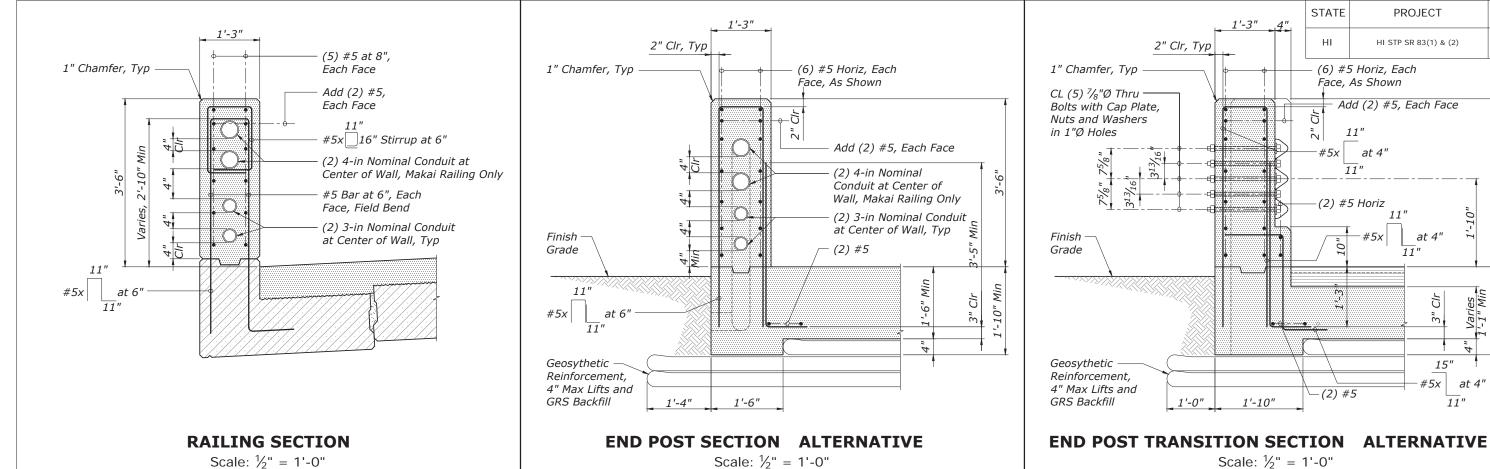
THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.

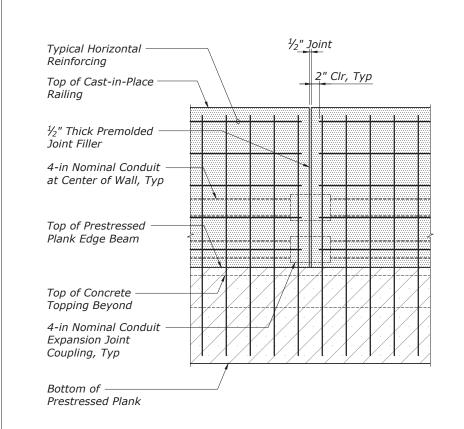
U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

NANAHU (HOOLAPA) STREAM BRIDGE KAMEHAMEHA HIGHWAY

HONOLULU COUNTY, HAWAII

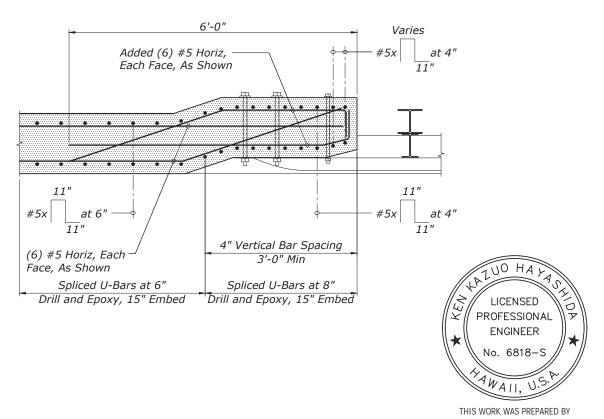

PLAN SECTIONS


NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		МН	19 of 50	NOVEMBER 2018	RG3083-S

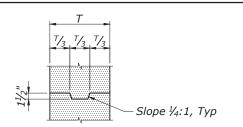

SHEET

NO.

S4.2



RAILING E PANSION OINT DETAIL


Scale: $\frac{1}{2}$ " = 1'-0"

END POST TRANSITION PLAN SECTION

Scale: $\frac{1}{2}$ " = 1'-0"

S EAR E DETAIL

Scale: $\frac{1}{2}$ " = 1'-0"

THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

NANAHU (HOOLAPA) STREAM BRIDGE KAMEHAMEHA HIGHWAY

HONOLULU COUNTY, HAWAII

RAILING SECTION

NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	МН		MH	21 of 50	NOVEMBER 2018	RG3083-U
								DE & DO	CADD	14111		IVIII	21 01 50	NOVEWIDER 2010	1100000 0

SHEET

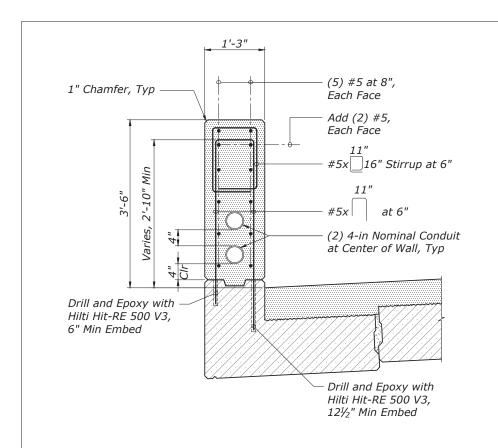
NO.

S5.2

PROJECT

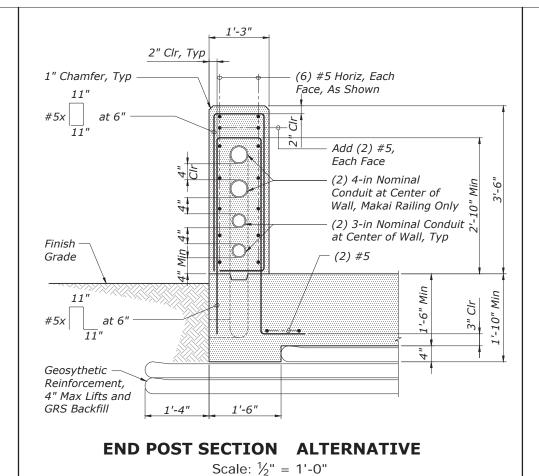
HI STP SR 83(1) & (2)

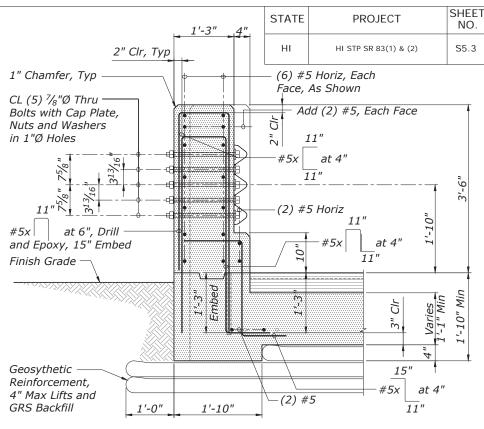
at 4"


15"

#5x

Varies 1'-1" Min


at 4"


11"

RAILING SECTION AT END OF PLAN NE

Scale: $\frac{1}{2}$ " = 1'-0"

END POST TRANSITION SECTION ALTERNATIVE

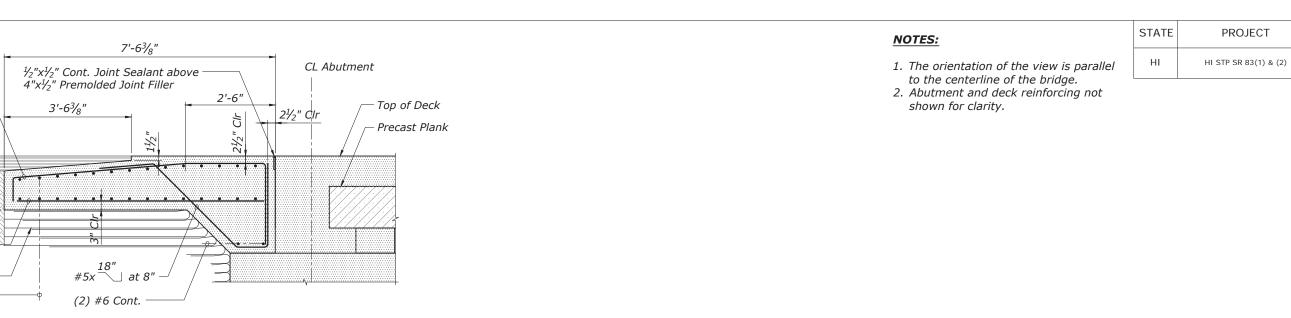
Scale: $\frac{1}{2}$ " = 1'-0"

LICENSED
PROFESSIONAL
ENGINEER
No. 6818-S

AWAII, U.S.

THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

April 30, 2022
SIGNATURE EXPIRATION DATE OF THE LICENSE


THESE PLANS HAVE BEEN PREPARED UTILIZING
INFORMATION PROVIDED BY THE PROJECT
CONTRACTOR. THE UPDATED CONSTRUCTION
INFORMATION DEPICTED HEREIN HAS NOT BEEN
VERIFIED FOR ACCURACY AND COMPLETENESS. NO
REPRESENTATION IS BEING MADE TO ITS VALIDITY.

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

NANAHU (HOOLAPA) STREAM BRIDGE
KAMEHAMEHA HIGHWAY
HONOLULU COUNTY, HAWAII

RAILING SECTION

NO.	DATE	BY	REVISIONS	NO. DATE BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
						BL & BC	CADD	MH		МН	22 of 50	NOVEMBER 2018	RG3083-V

T PICAL APPROAC SLAB SECTION

Scale: $\frac{3}{8}$ " = 1'-0"

#5 at 8", Top, Cont. -

#5 at 6", Top and —— Bottom, Placed Parallel

to Abutment Wall

Pavement,

#7 at 8", -Bottom, Cont. GRS Backfill

See Civil Dwgs

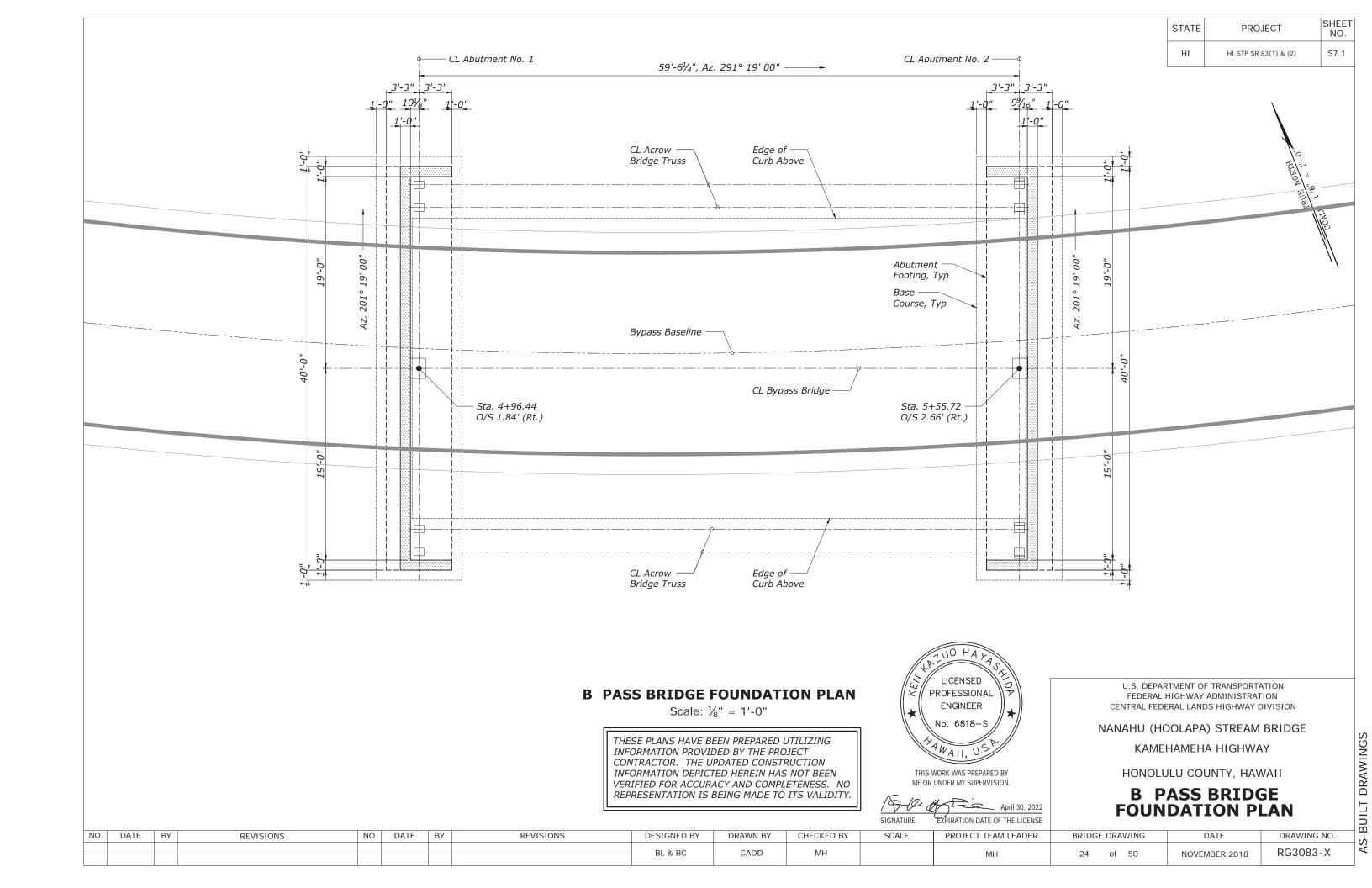
THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

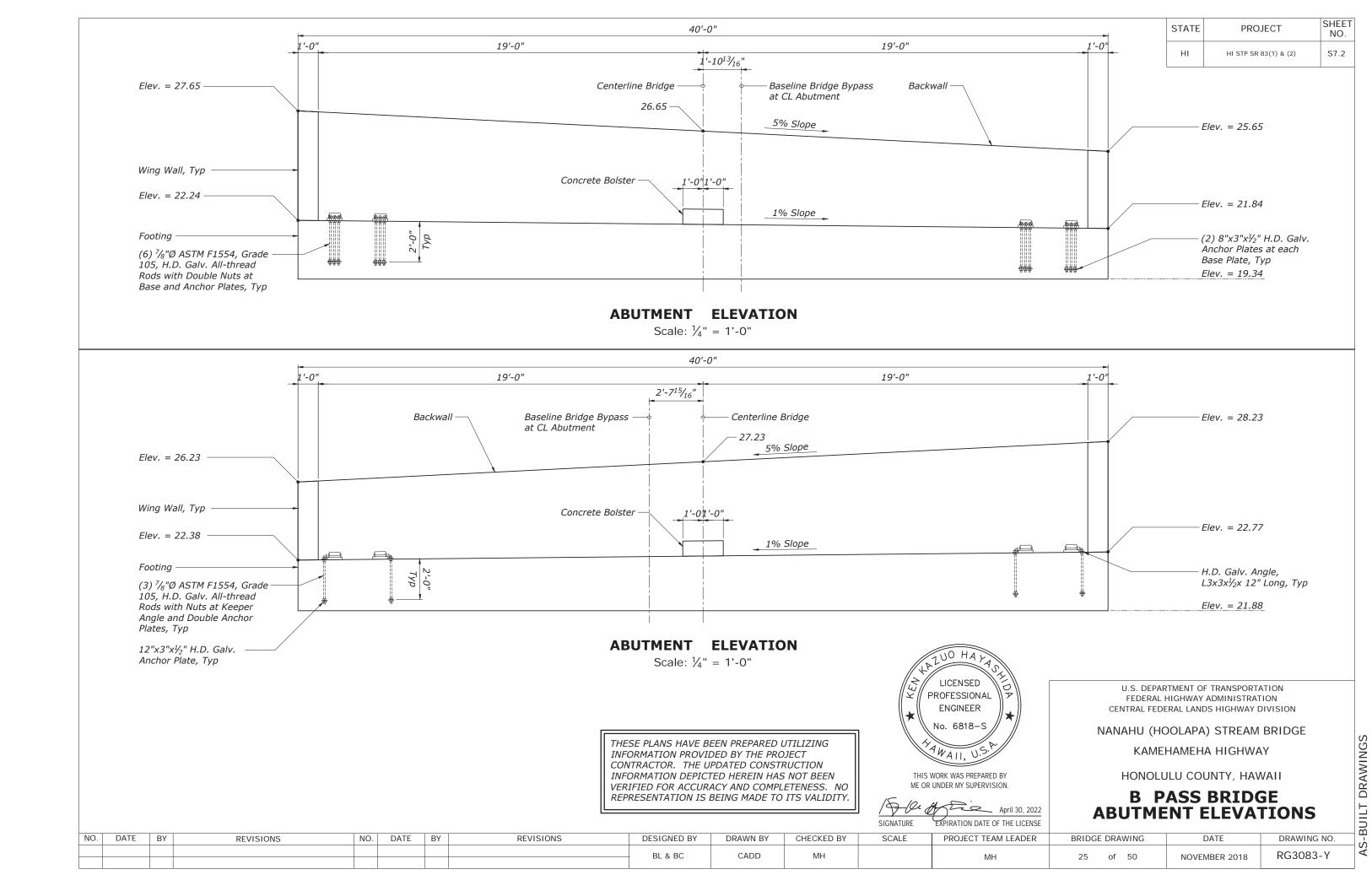
THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.

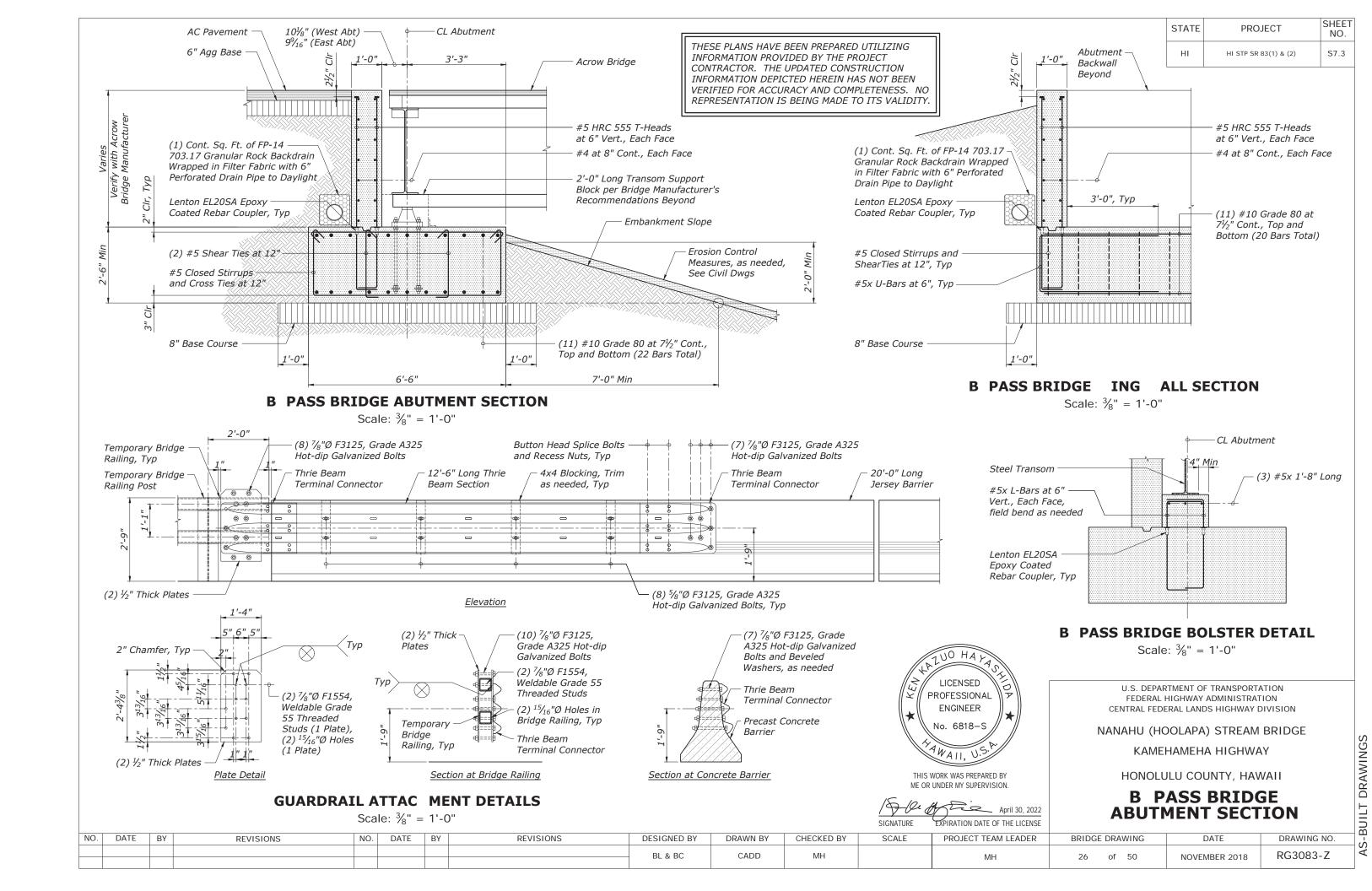
> U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

NANAHU (HOOLAPA) STREAM BRIDGE KAMEHAMEHA HIGHWAY

HONOLULU COUNTY, HAWAII


T PICAL APPROAC SLAB SECTION


IO. DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
							BL & BC	CADD	MH		MLI	22 of 50	NOVEMBER 2018	RG3083-W
							DE & DO	OADD	IVIII		IVIII	23 01 30	NOVEWBER 2016	NG3003 W


SHEET NO.

S6.1

PROJECT

DRAWING NO.	SHEET	DESCRIPTION
RG3084-A	S8.1	INDEX TO BRIDGE DRAWINGS
RG3084-B	S8.2	STRUCTURAL GENERAL NOTES
RG3084-C	S8.3	QUANTITY SCHEDULE
RG3084-D	S8.4	EXISTING BRIDGE DEMOLITION PLAN
RG3084-E	S8.5	EXISTING BRIDGE ABUTMENT ELEVATIONS
RG3084-F	S9.1	BRIDGE LAYOUT PLAN
RG3084-G	S9.2	BRIDGE FOUNDATION PLAN
RG3084-H	S9.3	BRIDGE DECK FRAMING PLAN
RG3084-I	S10.1	LONGITUDINAL SECTION
RG3084-J	S10.2	TYPICAL CROSS SECTION
RG3084-K	S11.1	ABUTMENT NO. 1 ELEVATION
RG3084-L	S11.2	ABUTMENT NO. 2 ELEVATION
RG3084-M	S11.3	ABUTMENT NO. 1 SECTIONS
RG3084-N	S11.4	ABUTMENT NO. 2 SECTIONS
RG3084-O	S11.5	TYPICAL CONNECTING SLAB
RG3084-P	S12.1	PRESTRESSED PLANK
RG3084-Q	S12.2	PLANK SECTIONS
RG3084-R	S13.1	GUARDRAIL DETAILS
RG3084-K	S13.1	RAILING SECTION
	010.2	
RG3084-T	S14.1	TYPICAL APPROACH SLAB SECTIONS
RG3084-U	S15.1	TYPICAL PRESTRESSED PILE NOTES AND DETAILS
RG3084-V	S16.1	BYPASS BRIDGE FOUNDATION PLAN

KAWELA CONSTRUCTION AND CONCRETE PLACEMENT SEQUENCE:

- 1. Pile Cap
- 2. Abutment Wall and 6" Slab-On-Grade
- 3. Bridge Deck
- 4. Approach Slab
- 5. Barrier Railing (Mauka Abutment 2 and Makai Abutment 1) and End Post (Mauka Abutment 1 and Makai Abutment 2)
- 6. Barrier Railing (Mauka Abutment 1 and Makai Abutment 2) and End Post (Mauka Abutment 2 and Makai Abutment 1)

STATE	PROJECT	SHEET NO.	
НІ	HI STP SR 83(1) & (2)	S8.1	

THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

April 30, 2022
SIGNATURE EXPIRATION DATE OF THE LICENSE

THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

KAWELA STREAM BRIDGE KAMEHAMEHA HIGHWAY

HONOLULU COUNTY, HAWAII

INDE TO BRIDGE DRA INGS

NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		MH	27 of 50	NOVEMBER 2018	RG3084-A
								DE Q D0	O/IDD			IVII I	27 01 30	NOVEWBER 2018	1100001 71

GENERAL:

- A. Design standards: AASHTO LRFD Bridge Design Specification, 7th Edition, 2014 as amended by State of Hawaii Department of Transportation Highways Division Design Criteria for Bridges and Structures, August 8, 2014.
- B. The Contractor shall compare all the contract documents with each other and report in writing to the Engineer all inconsistencies and omissions.
- C. The contractor shall take field measurements and verify field conditions and shall compare such field measurements and conditions with the drawings. Report in writing to the Engineer all inconsistencies and omissions.
- D. The contractor shall be responsible for coordinating the work of all trades.
- E. The contractor shall be responsible for means and methods of construction, workmanship and job safety.
- F. The contractor shall provide temporary shoring and bracing as required for stability of structural members and systems.
- G. Construction loading shall not exceed design live load unless special shoring is provided. Permitted construction loads shall be properly reduced in areas where the structure has not attained full design strength.
- H. The contractor shall be responsible for protection of the adjacent properties, structures, streets and utilities during the construction period. Any damaged or deteriorated property shall be restored to the condition prior to the beginning of work or better at no cost to the state.
- Details noted as typical on the structural drawings shall apply in all conditions unless specifically shown or noted otherwise.

DESIGN CRITERIA:

- A. Live loads
 - 1. Vehicular: HL-93
- 2. Bridge railing: in accordance with AASHTO TL-3
- B. Lateral loads
 - 1. Seismic
 - a. Spectral response acceleration coefficients
 - i) Short period, s_s : 0.366g
 - ii) 1-sec period, s_1 : 0.100g
 - b. Site Class: E
- c. Seismic Zone: 3
- C. Soils
 - 1. Strength limit state bearing capacity
 - a. Approach slabs: 4,000 psf
 - b. Bypass bridge abutments: 3,600 psf
 - 2. Earth pressure
 - a. Active (level backfill)
 - i) Unrestrained: 53 pcf

Restrained: 74 pcf

- b. Passive:
 - i) Strength limit state: 221 pcf
 - i) Extreme limit state: 442 pcf
- C. Future wearing surface (curb to curb): 25 psf
- Future utility line each side of bridge: 150 plf

FOUNDATION:

- A. Foundation design is based on the Geotechnical Exploration and Evaluation Report, dated August 2019.
- B. Contractor shall provide de-watering of excavated areas, as required.
- Footings shall bear on undisturbed in-situ firm soils bottom of footings shall be compacted to provide a relatively firm and smooth bearing surface prior to placement of reinforcing steel and concrete. If soft and/or loose materials are encountered at the bottom of footing excavations, they shall be over-excavated to expose the underlying firm materials. The over-excavated area shall be backfilled with select granular material compacted to a minimum of 95% relative compaction or the footing bottom may be extended down to the underlying competent material. Contractor may substitute flowable concrete or the granular material upon approval from the Engineer.
- D. Excavations for footings shall be approved by the Geotechnical Engineer of Record prior to placement of concrete and reinforcing.
- E. Engineered fill and backfill shall be in accordance with FP-14 Specifications and associated SCR's.
- F. Fill should be moisture conditioned to within two percent of the optimum moisture content and placed in horizontal lifts not to exceed six inches. Fill shall be compacted to minimum 95%relative density as measured by AASHTO T180.

CONCRETE:

- A. Concrete construction shall conform to the FP-14 Specifications and associated SCR's.
- B. Concrete shall be normal weight hard rock concrete and shall have the following minimum 28 day compressive strength or comply with class of concrete compressive strength listed in the FP-14 Specifications:

Pre-stressed piles	6000 psi
	0000 '

Pre-stressed planks
 Abutment footings and pile caps
 Class A

4. Slab topping, approach slabs,

and railings Class A
5. Abutment walls and wing walls Class A
6. All other concrete Class A

- C. Concrete delivery tickets shall record all free water in the mix at batching plant, added for consistency by driver, and any additional request by contractor up to the maximum amount allowed by the mix design.
- D. All inserts, anchor bolts, plates, and other items to be cast in the concrete shall be hot-dipped galvanized according to ASTM A153 unless otherwise noted.
- E. Reinforcing bars, anchor bolts, inserts, and other items to be cast in the concrete shall be secured in position prior to placement of concrete.
- F. Conduits, pipes, and sleeves passing through a slab or footing that do not conform to typical details shall be located and the proposed construction detail submitted to the Engineer for approval.
- G. Conduits, pipes, and sleeves embedded within a slab or wall (other than those merely passing through) shall be:
 - No larger in outside dimensions than one third the overall slab or wall thickness in which they are embedded.
 - 2. Placed in the middle one third of slab or wall thickness
 - 3. Spaced no closer than three diameters or widths on center
- H. Conduits, pipes, and sleeves shall not be placed through or embedded in a beam unless specifically detailed.

- The contractor shall locate construction joints not shown on the drawings, so as not to impair the strength of the structure and to minimize shrinkage stresses. Submit proposed locations of construction joints to the Engineer for approval.
- J. Non-shrink grout shall be a premixed non-metallic formula, shall be capable of developing a minimum compressive strength of 5,000 psi in 3 days and 8,900 psi in 28 days, and shall contain at least 10 grams of migrating amine carboxylate corrosion inhibitor when grout is in contact with steel appurtenances. Precast plank shear keys will not require corrosion inhibitor.
- C. Joint filler shall conform to FP-14 section 712.01(b).
- L. A shrinkage reducing admixture conforming to SCR section 711.03(b) shall be included in the concrete mix for all cast-in-place concrete.
- M. A corrosion inhibiting admixture conforming to SCR section 711.03(a) shall be included in the concrete mix for all concrete.
- N. Reinforcing fibers conforming to SCR section 725.17(b) shall be included in the concrete mix for members as specified in SCR section 552.03.

THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.

STATE

ΗΙ

PROJECT

HI STP SR 83(1) & (2)

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

> KAWELA STREAM BRIDGE KAMEHAMEHA HIGHWAY

HONOLULU COUNTY, HAWAII

NO HA

LICENSED

PROFESSIONAL

ENGINEER

No. 6818-S

THIS WORK WAS PREPARED BY

MAII, U

STRUCTURAL GENERAL NOTES

NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	МН		MIL	29 of E0	NOVEMBED 2010	RG3084-B
								DE & BC	CADD	10111		IVIH	28 of 50	NOVEMBER 2018	KG3004-D

SHEET

NO.

S8.2

REINFORCING STEEL:

- A. Reinforcing steel shall be deformed bars conforming to AASHTO M31, Grade 60, unless otherwise noted.
- B. Low alloy steel deformed bars shall conform to FP-14 section 709.01(i), Grade 60, unless otherwise noted.
- C. Clear concrete cover for reinforcing bars shall be as follows, unless otherwise noted:
 - 1. Footings, slabs, etc. cast against earth: 3"
 - 2. Footings, walls, grade beams, etc. formed and exposed to earth or weather: 2"
 - 3. Bridge deck top reinforcement: 2-1/2"
 - 4. Other: 2"
- D. Reinforcing steel shall be spliced where indicated on plans. Provide lap splice length per typical details and schedule, unless otherwise noted.
- E. Mechanical splice connectors shall develop in tension 125 percent of the specified minimum yield strength of reinforcing bars.
- F. Provide standard hooks conforming to ACI SP-66.
- G. Fabricate reinforcing bars according to ACI SP-66, ACI Detailing Manual.
- H. Reinforcing steel shall be placed and secured in conformance with crsi manual of standard practice with placement tolerances per ACI standard 117.

STRUCTURAL STEEL:

- A. Fabrication and erection of structural steel shall conform to the american institute of steel construction manual of steel construction, thirteenth edition.
- B. Structural steel shall conform to ASTM A36 unless otherwise noted.
- C. Steel wide flange sections shall conform to ASTM A992.
- D. Plates and bars shall conform to ASTM A36.
- E. Welds and welding procedures shall conform to the structural welding code AWS D1.1 of the american welding society.
- F. Welding shall be performed by welders prequalified for welding procedures to be used.
- G. Welding electrodes shall be E70xx for carbon steel.
- H. High-strength bolts shall conform to ASTM A325, type N. Installation shall be assured by any of the following methods:
 - 1. Turn of nut method
 - 2. Direct tension indicator
 - 3. Calibrated wrench
 - 4. Alternative design bolt
- All anchor bolts, plates, and other items to be cast in concrete shall be hot-dip galvanized according to ASTM A153 unless otherwise noted.
- J. Carbon steel bolts shall conform to ASTM A307, grade a unless otherwise noted, and shall be hot-dip galvanized according to ASTM A153.
- K. All steel shall be hot-dip galvanized after fabrication according to ASTM A123.
- L. Any damaged galvanized surface shall be repaired as follows:
 - 1. prepare surface per sspc-sp1, solvent cleaning.
 - 2. apply two coats of cold applied galvanizing compound containing 95% metallic zinc content by weight in dry film and 52% solids content by volume.
 - 3. application rate shall be 1.5 mils dry film thickness per coat.

TATE	PROJECT	SHEET NO.	
ні	HI STP SR 83(1) & (2)	S8.3	

LOAD RATING												
	Rating Factor	Distribution Factor	Load Effect	Controlling Member								
HL-93 Inventory	2.05	0.325	Positive Moment	Interior Girder								
HL-93 Operating	2.66	0.325	Positive Moment	Interior Girder								

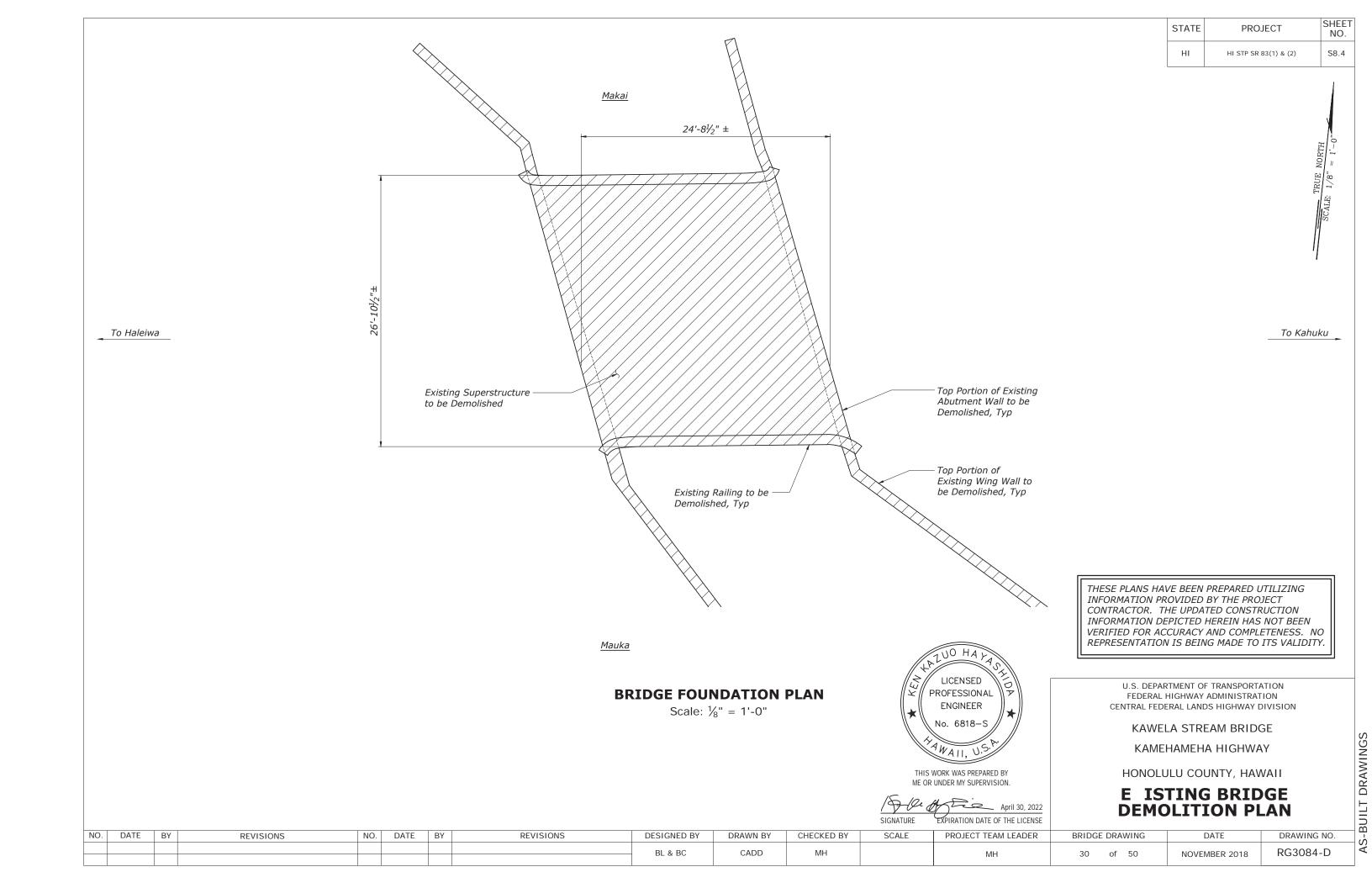
	ESTIMATE												
Item No.	Description	Quantity	Unit	Notes									
20304-1000	Removal of structures and obstructions	LPSM	LPSM	-									
20435-2000	Backfill, Granular (beneath approach slabs)	25	CUYD	(1)									
20801-0000	Structure excavation	214	CUYD	-									
20803-0000	Structure backfill	18	CUYD	-									
55101-0300	Precast prestressed concrete pile	864	LNFT	-									
55201-1500	Structure Concrete	281	CUYD	(2)									
55302-3500	Precast, prestressed concrete slab, 14" solid	460	LNFT	(3)									
55401-1000	Reinforcing steel	94400	LB	-									
55601-0500	Bridge railing, concrete	164	LNFT	-									
61707-0000	Structure Transition Railing	100	LNFT	(4)									

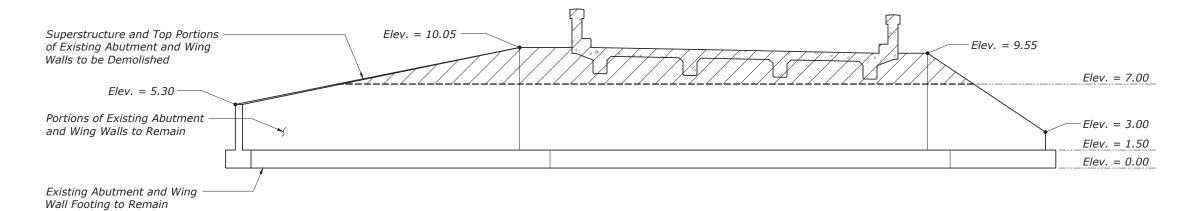
ESTIMATE NOTES:

- (1) Includes cost of drain pipes, geocomposite drains, aggregate base course backfill and aggregate subbase course
- (2) Includes cost of bridge deck, approach slabs
- (3) Includes cost of concrete, reinforcing steel, prestressing steel, inserts, plates, lifting devices, and other materials required for the manufacture and erection of the planks
- (4) Includes cost of furnishing and installing posts, blocks, thrie and W-beam rail elements, anchor plates, and installation hardware

THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

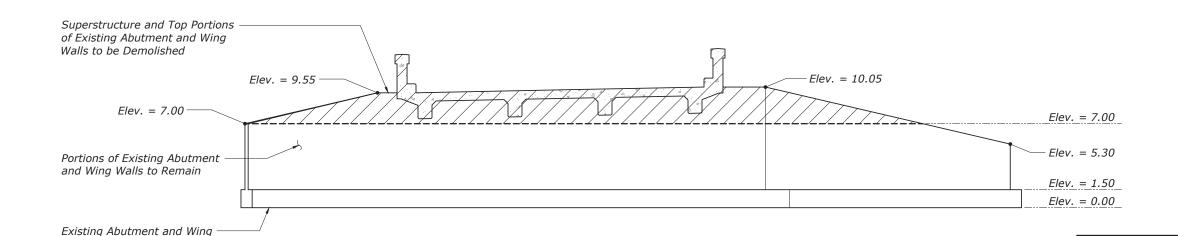
April 30, 2022
SIGNATURE EXPIRATION DATE OF THE LICENSE


THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.


U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

KAWELA STREAM BRIDGE
KAMEHAMEHA HIGHWAY
HONOLULU COUNTY, HAWAII

UANTIT SC EDULE


NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		MH	29 of 50	NOVEMBER 2018	RG3084-C
								DL & DC	CADD	IVIII		IVIE	29 01 50	NOVEWIDER 2016	1.03004 0

E ISTING BRIDGE EST ABUTMENT FRONT ELEVATION

Scale: $\frac{1}{8}$ " = 1'-0"

E ISTING BRIDGE EAST ABUTMENT FRONT ELEVATION

Scale: $\frac{1}{8}$ " = 1'-0"

NOTES:

1. The orientations of the views are perpendicular to the baseline of the highway.

Wall Footing to Remain

2. Temporary shoring shall be used as needed to maintain the integrity and stability of the existing abutment walls until the bridge concrete deck topping has been placed.

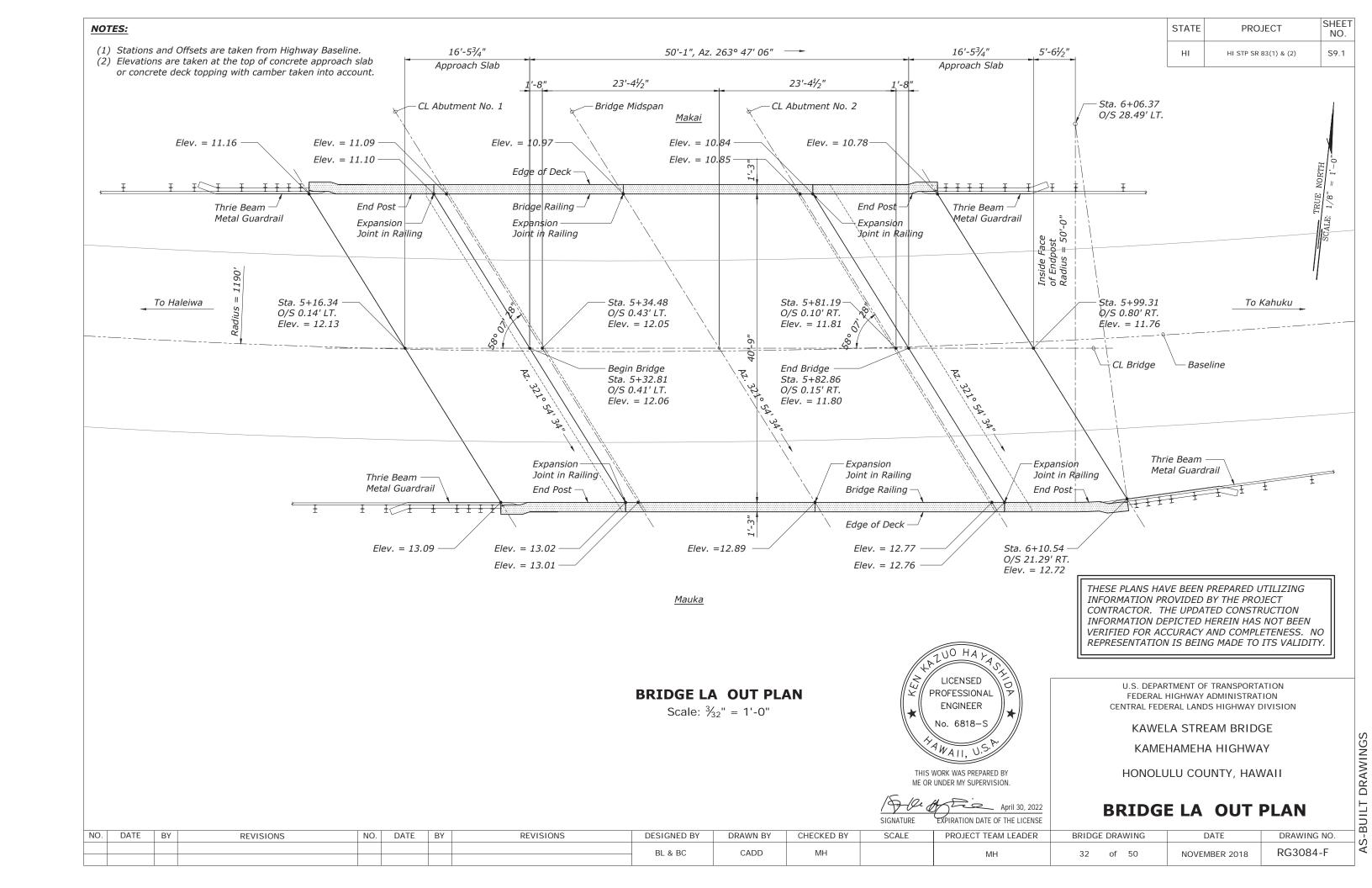
THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

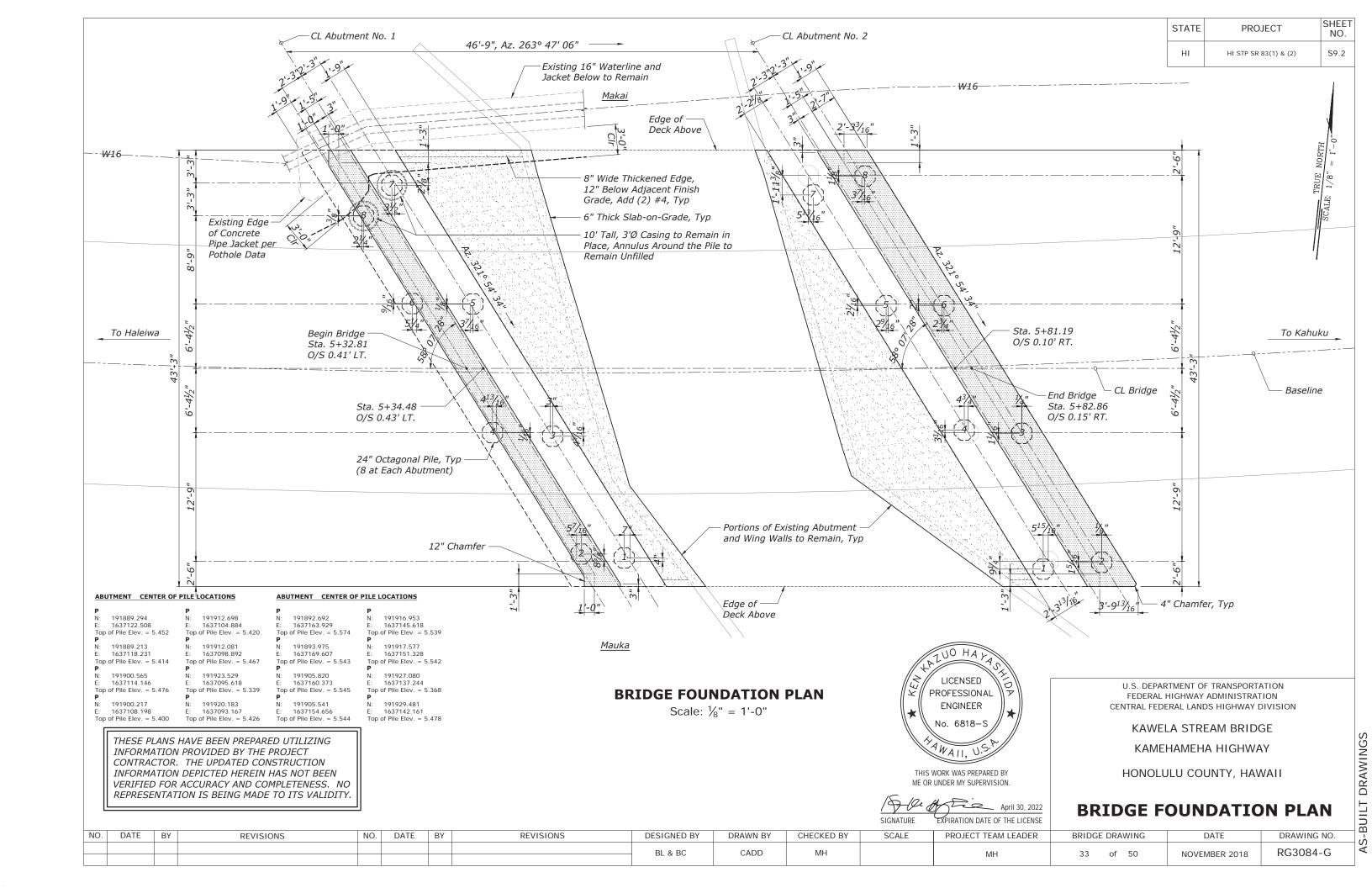
April 30, 2022
SIGNATURE EXPIRATION DATE OF THE LICENSE

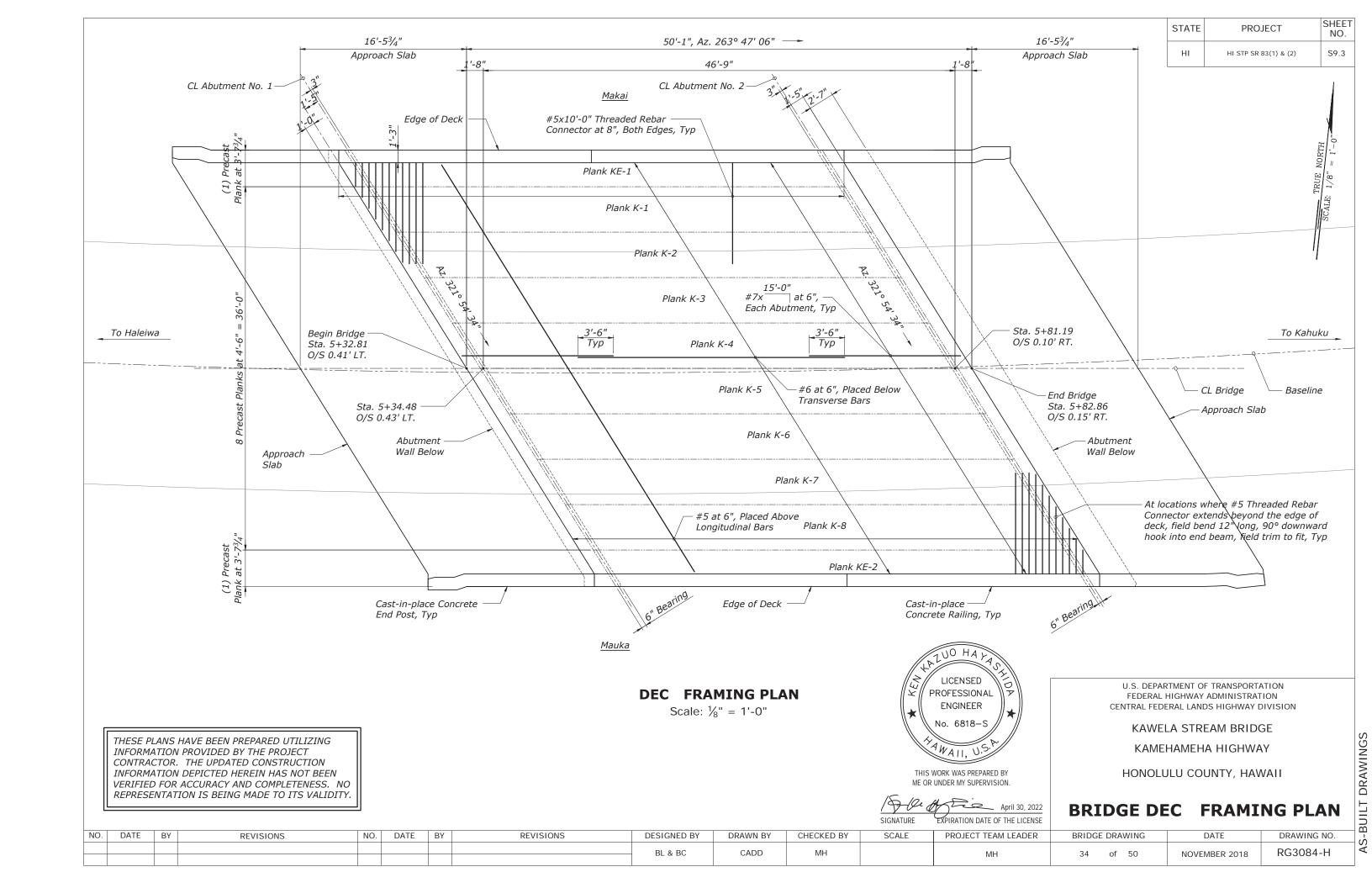
U.S. DEPARTMENT OF TRANSPORTATION
FEDERAL HIGHWAY ADMINISTRATION
CENTRAL FEDERAL LANDS HIGHWAY DIVISION

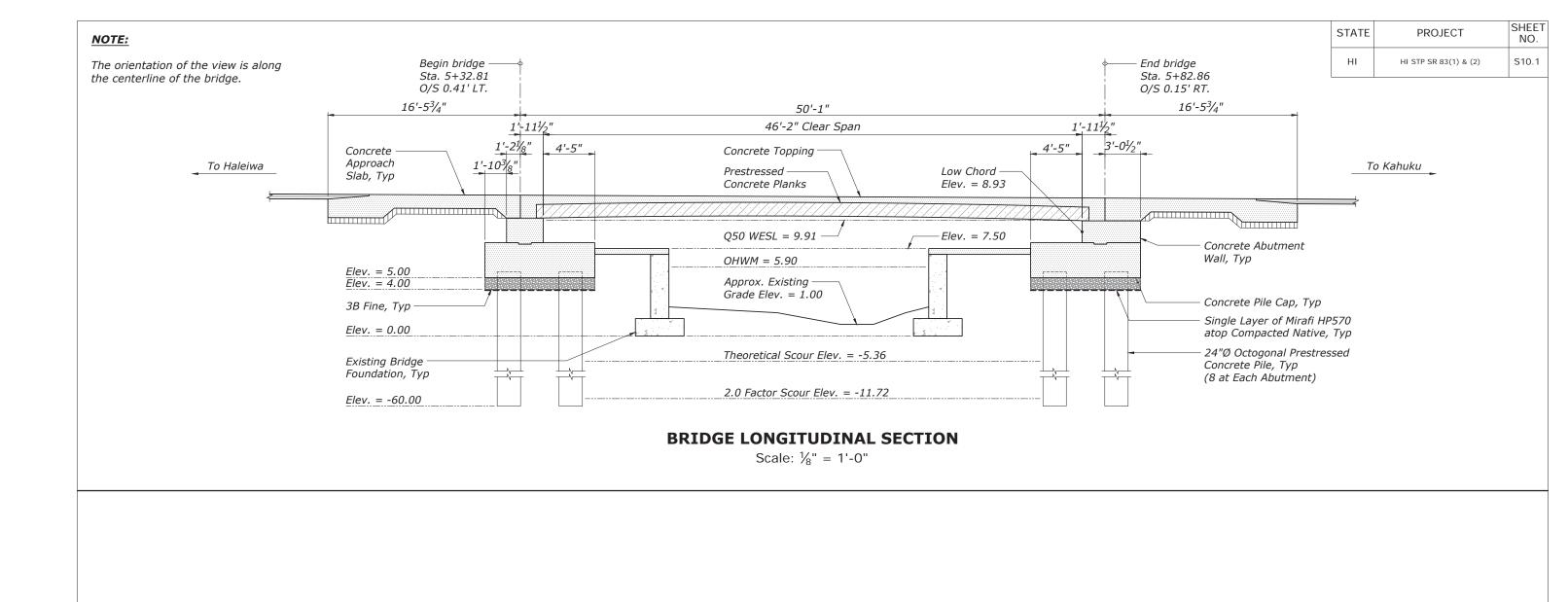
THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION

INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO


REPRESENTATION IS BEING MADE TO ITS VALIDITY.


KAWELA STREAM BRIDGE KAMEHAMEHA HIGHWAY


HONOLULU COUNTY, HAWAII


E ISTING BRIDGE ABUTMENT ELEVATIONS

NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		MLI	21 of 50	NOVEMBER 2018	RG3084-E
								DE & DC	CADD	IVIII		IVIE	31 01 50	NOVEWIBER 2016	1100004 E

THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

April 30, 2022
SIGNATURE EXPIRATION DATE OF THE LICENSE

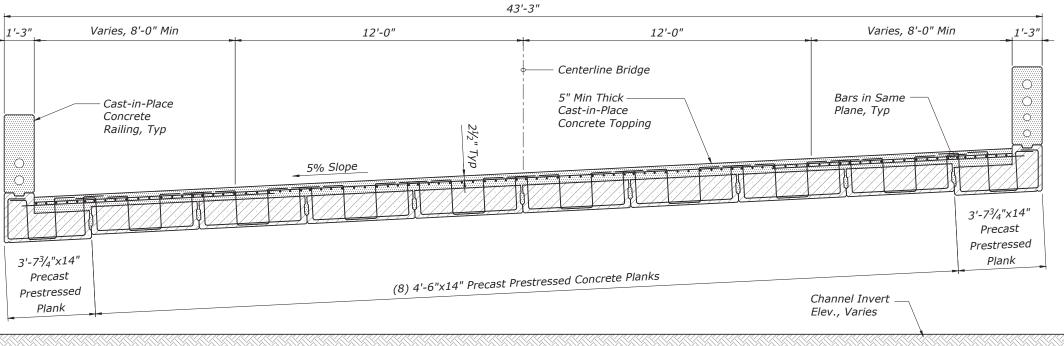
THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.


U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

> KAWELA STREAM BRIDGE KAMEHAMEHA HIGHWAY

HONOLULU COUNTY, HAWAII

LONGITUDINAL SECTION


Ν	O. DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		MLI	25 of 50	NOVEMBER 2018	RG3084-I
								DE & DO	CABB	10111		IVIT	35 01 50	NOVEWIDER 2016	103004 1

of the bridge.

 STATE
 PROJECT
 SHEET NO.

 HI
 HI STP SR 83(1) & (2)
 \$10.2

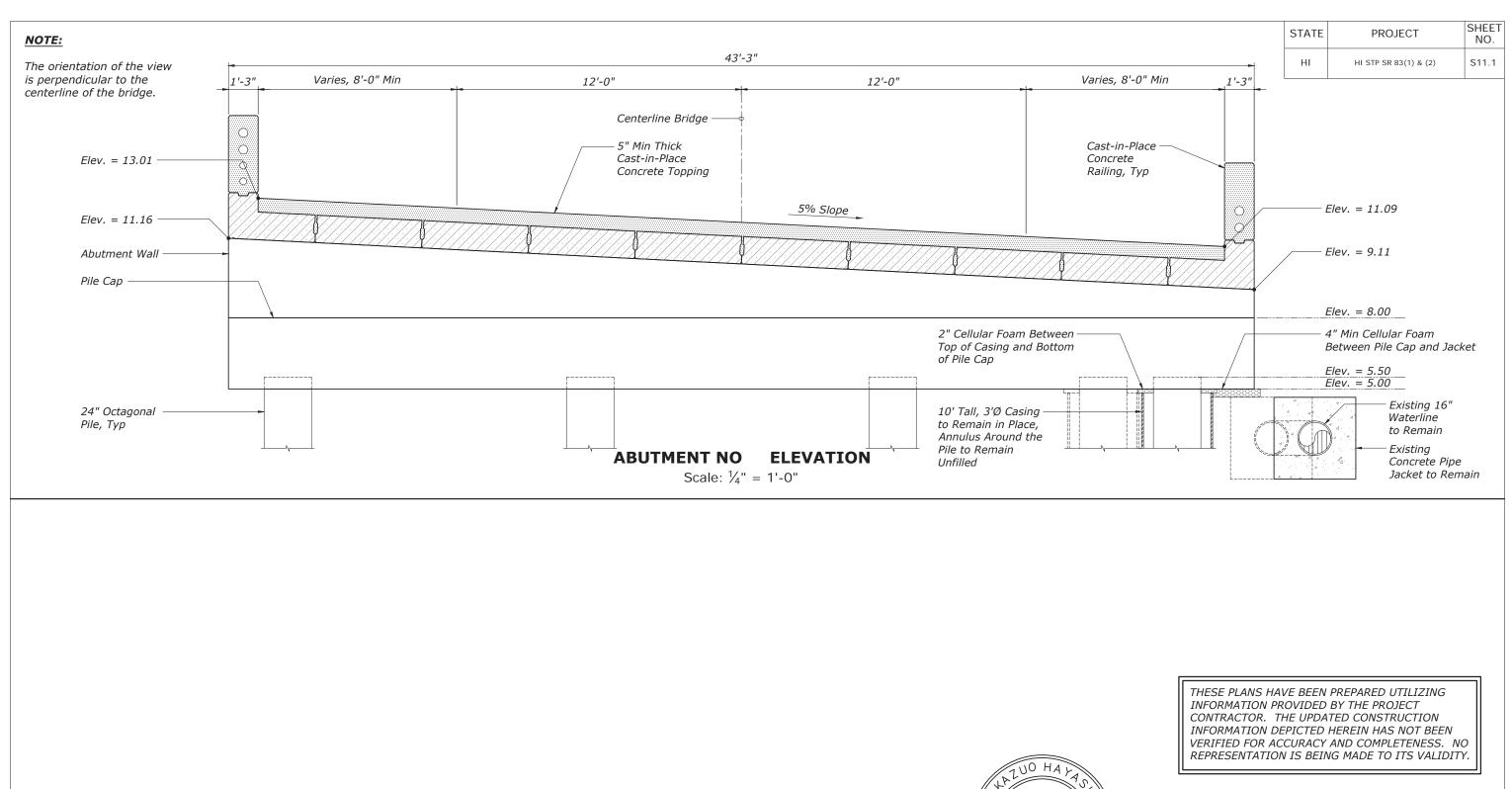
T PICAL BRIDGE CROSS SECTION

Scale: $\frac{1}{4}$ " = 1'-0"

THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

April 30, 2022
SIGNATURE EXPIRATION DATE OF THE LICENSE

THESE PLANS HAVE BEEN PREPARED UTILIZING
INFORMATION PROVIDED BY THE PROJECT
CONTRACTOR. THE UPDATED CONSTRUCTION
INFORMATION DEPICTED HEREIN HAS NOT BEEN
VERIFIED FOR ACCURACY AND COMPLETENESS. NO
REPRESENTATION IS BEING MADE TO ITS VALIDITY.


U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

> KAWELA STREAM BRIDGE KAMEHAMEHA HIGHWAY

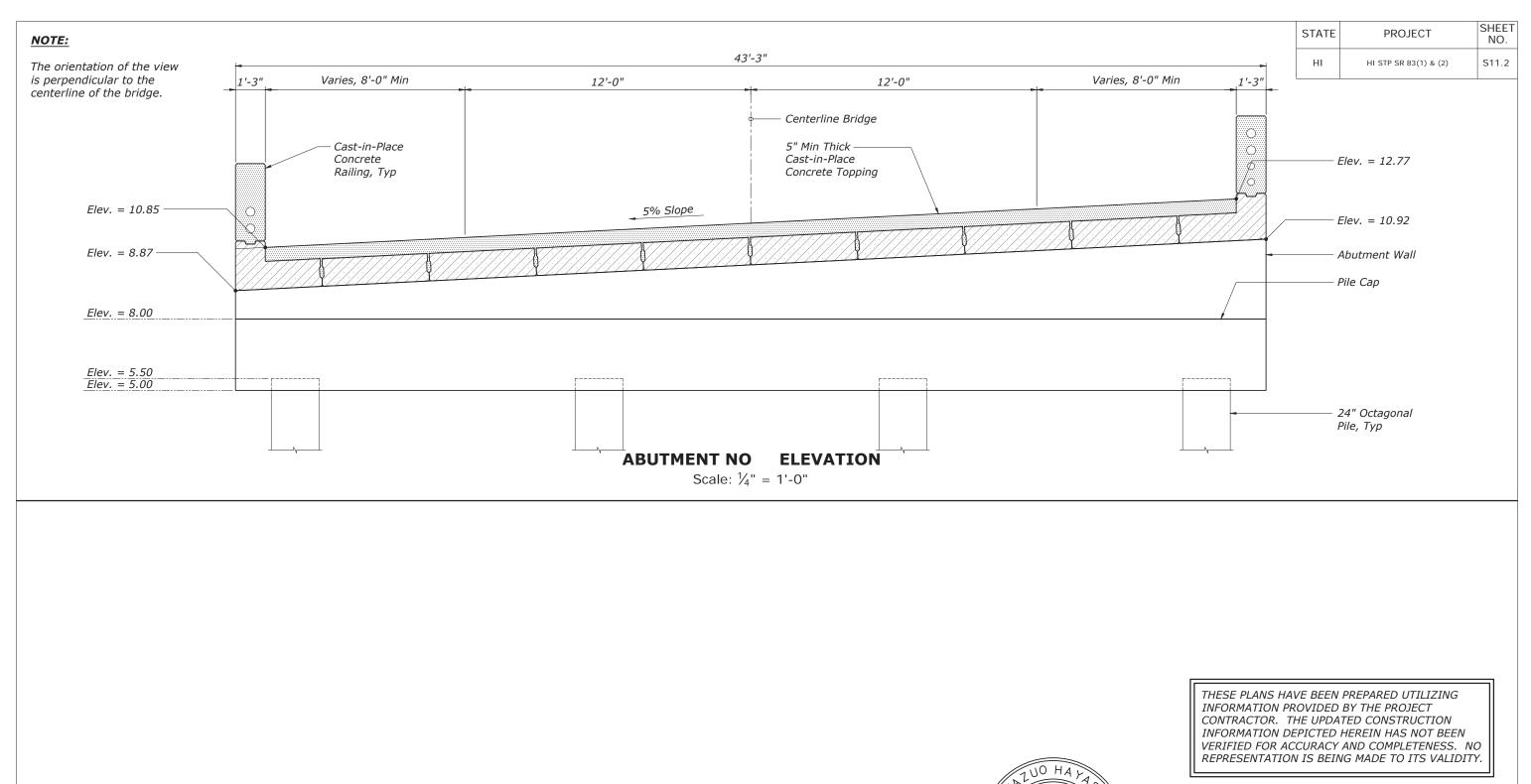
HONOLULU COUNTY, HAWAII

T PICAL CROSS SECTION

Ν	O. DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		ML	26 of 50	NOVEMBER 2018	RG3084-J
								DE & DO	CABB	10111		IVIH	30 01 30	NOVEWIDER 2010	103004 3

LICENSED PROFESSIONAL **ENGINEER** No. 6818-S AWAII, U

> THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.


April 30, 2022 EXPIRATION DATE OF THE LICENSE

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

> KAWELA STREAM BRIDGE KAMEHAMEHA HIGHWAY

NAVVEI	A SIREAW DRID	JE	S							
KAME	HAMEHA HIGHWA	ΛY	ORAWINGS							
HONOLULU COUNTY, HAWAII										
ABUTMENT NO ELEVATION										
BRIDGE DRAWING	DATE	DRAWING NO.	S-BUILT							
37 of 50	NOVEMBER 2018	RG3084-K	A							

NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		МН	37 of 50	NOVEMBER 2018	RG3084-K

LICENSED
PROFESSIONAL
ENGINEER
U.S. DEPARTMENT OF TRANSPORTATION
FEDERAL HIGHWAY ADMINISTRATION
CENTRAL FEDERAL LANDS HIGHWAY DIVISION

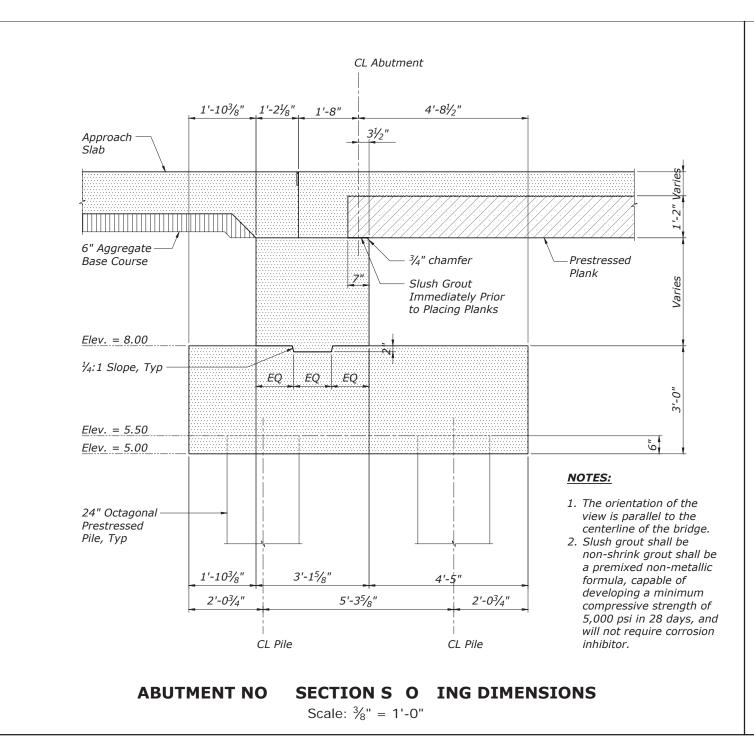
KAWELA STREAM BRIDGE KAMEHAMEHA HIGHWAY

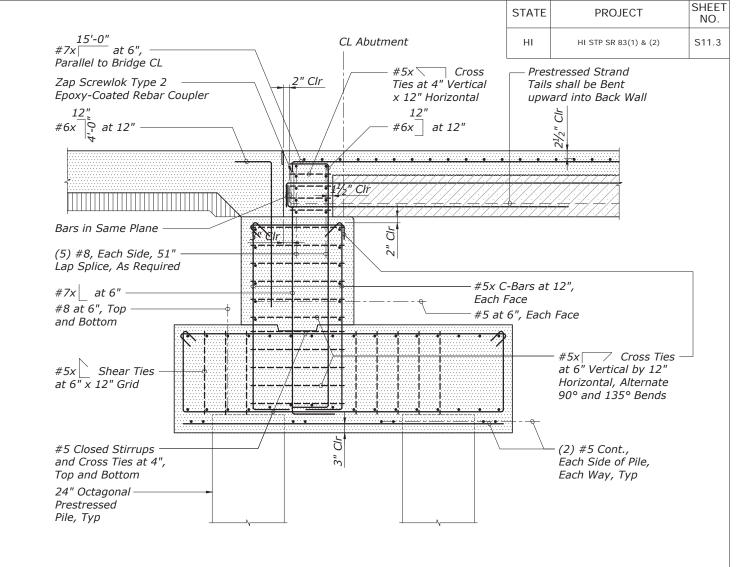
HONOLULU COUNTY, HAWAII

BUILT DRAWINGS

ELEVATION

April 30, 2022	ABUTMENT NO
NATURE EXPIRATION DATE OF THE LICENSE	/\DOTTIENT ITO


No. 6818-S


THIS WORK WAS PREPARED BY

ME OR UNDER MY SUPERVISION.

AWAII, U

f	NO.	DATE	BY	IO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	МН		MLI	38 of 50	NOVEMBER 2018	RG3084-L
								DE & BO	CADD	14111		IVIT	38 01 50	NOVEWIDER 2016	NOSOO4 L

NOTE:

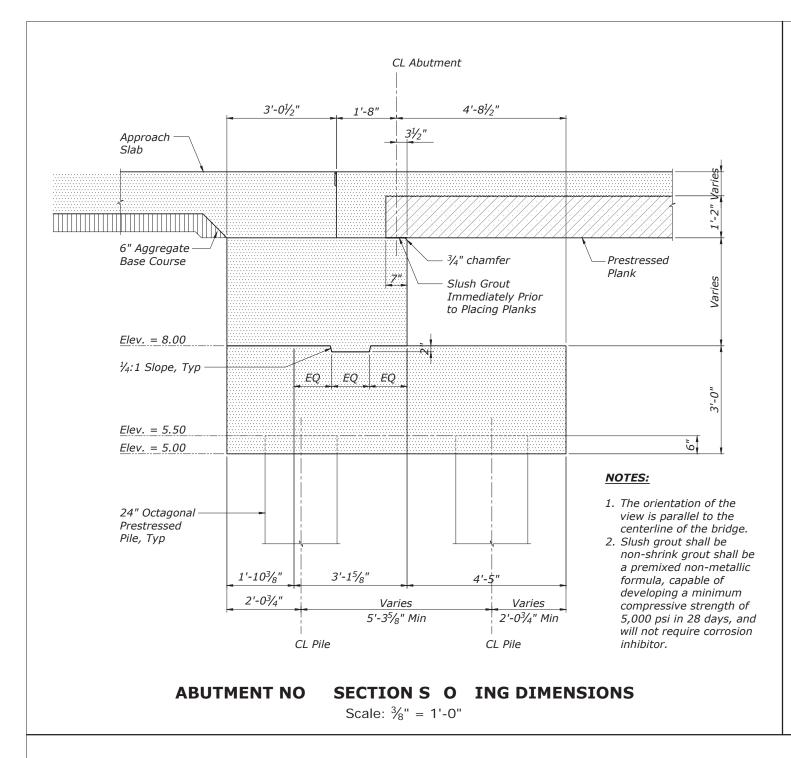
The orientation of the view is parallel to the centerline of the bridge.

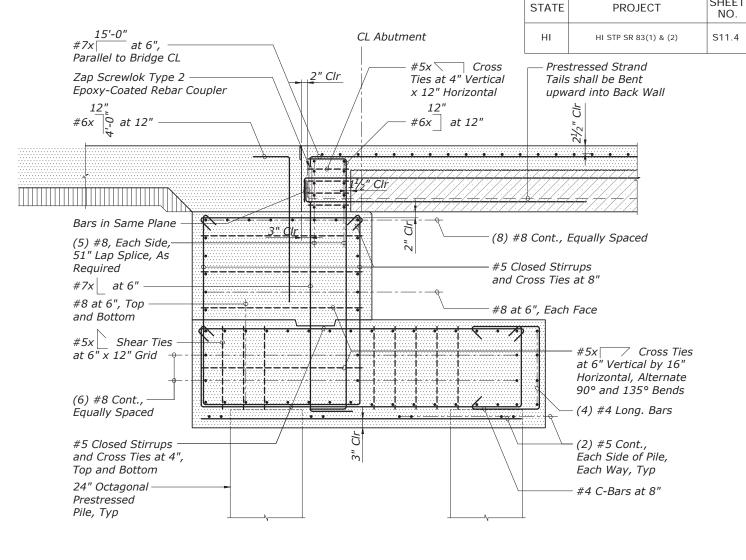
ABUTMENT NO SECTION S O ING REINFORCING

Scale: $\frac{3}{8}$ " = 1'-0"

THESE PLANS HAVE BEEN PREPARED UTILIZING
INFORMATION PROVIDED BY THE PROJECT
CONTRACTOR. THE UPDATED CONSTRUCTION
INFORMATION DEPICTED HEREIN HAS NOT BEEN
VERIFIED FOR ACCURACY AND COMPLETENESS. NO
REPRESENTATION IS BEING MADE TO ITS VALIDITY.

THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.


U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION


> KAWELA STREAM BRIDGE KAMEHAMEHA HIGHWAY

HONOLULU COUNTY, HAWAII

ABUTMENT NO SECT

NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		MH	20 of 50	NOVEMBER 2018	RG3084-M
								DE & DO	CADD	10111		IVIH	39 01 50	NOVEWIDER 2016	INGSOUT IVI

NOTE:

The orientation of the view is parallel to the centerline of the bridge.

ABUTMENT NO SECTION S O ING REINFORCING

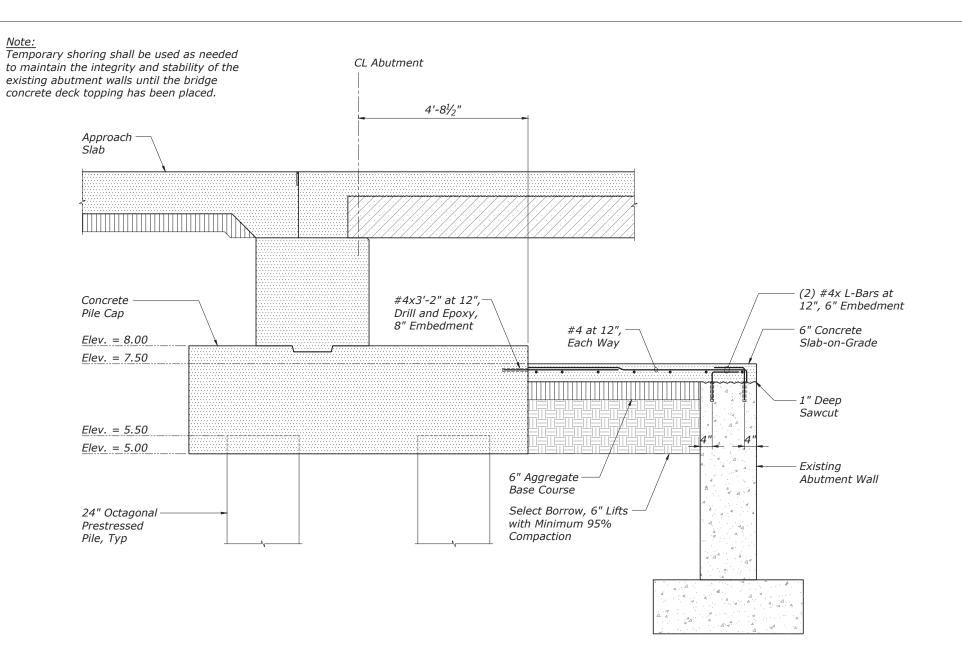
Scale: $\frac{3}{8}$ " = 1'-0"

THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.

ME OR UNDER MY SUPERVISION.

April 30, <u>2022</u> EXPIRATION DATE OF THE LICENSE

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION


> KAWELA STREAM BRIDGE KAMEHAMEHA HIGHWAY

HONOLULU COUNTY, HAWAII

SECTIONS ABUTMENT NO

NO. D	ATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		MILI	40 of 50	NOVEMBER 2018	RG3084-N
								DE & DC	CADD	14111		IVIT	40 01 30	NOVEWIDER 2010	1100004 11

SHEET

T PICAL CONNECTING SLAB

Scale: $\frac{3}{8}$ " = 1'-0"

THESE PLANS HAVE BEEN PREPARED UTILIZING
INFORMATION PROVIDED BY THE PROJECT
CONTRACTOR. THE UPDATED CONSTRUCTION
INFORMATION DEPICTED HEREIN HAS NOT BEEN
VERIFIED FOR ACCURACY AND COMPLETENESS. NO
REPRESENTATION IS BEING MADE TO ITS VALIDITY.

THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

April 30, 2022
SIGNATURE EXPIRATION DATE OF THE LICENSE

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

STATE

HI

PROJECT

HI STP SR 83(1) & (2)

KAWELA STREAM BRIDGE
KAMEHAMEHA HIGHWAY
HONOLULU COUNTY, HAWAII

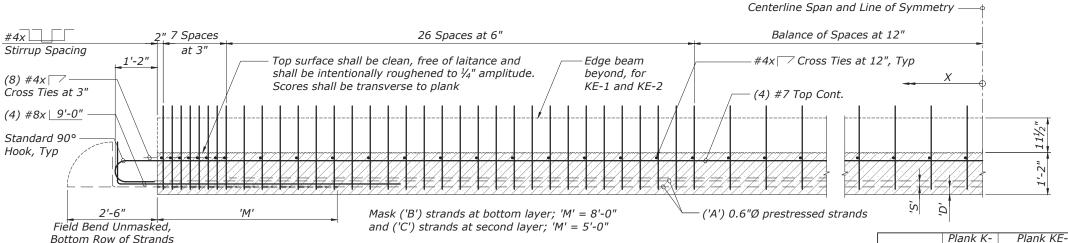
·

T PICAL CONNECTING SLAB

NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		MILI	41 of 50	NOVEMBED 2019	RG3084-0
								DE & DC	CADD	IVIII		IVIH	41 01 50	NOVEMBER 2018	103004-0

SHEET

NO.


S11.5

- 1. Prestressed concrete 28 day strength f'c = 8,000 psi. prestressed concrete strength at time of release fci = 6,400 psi.
- 2. Prestressing strands shall be (7) wire 0.6" \emptyset low relaxation steel strands (Area = 0.217 in²) conforming to ASTM A416 with an ultimate tensile strength of 270 ksi. Initial strand stress (immediately prior to release of prestress) = 0.75 f_{nu} = 202.5 ksi.
- 3. Non-prestressed reinforcing steel shall be deformed bars conforming to ASTM A615 or A706, Grade 60, unless noted otherwise.
- 4. Strand pattern shall be symmetrical about the longitudinal centerline of the plank.
- Strand release sequence shall not induce any lateral deflection of the plank.
- 6. Contractor shall submit shop drawings indicating proposed strand pattern, releasing sequence, reinforcing details and hold down device details to the engineer prior to fabrication.
- 7. During curing, care shall be taken to avoid any lateral deflection to the plank due to improper orientation. steam curing may be used to accelerate strength gain.
- 8. Lifting devices shall be placed as close as possible to the centerline of bearings of the plank. details and locations of lifting devices shall be submitted to the engineer for approval. such approval does not relieve the contractor of his responsibilities if plank is damaged due to failure of the lifting device.
- 9. $P_{(e)} = \text{effective prestress force after all losses (kips)}$
- 10. Plank stirrups shall be placed parallel to the bridge skew.
- 11. Top row of unmasked strands shall be cut flush with the face of plank.

Notes:

- 1. The plank lengths shown do not include changes in length increase due to elastic and time dependent shortening effects and longitudinal slope of the plank.
- 2. The unmasked strands shall have 2'-6" extension at both ends of each plank.

STATE	PROJECT	SHEET NO.	
НІ	HI STP SR 83(1) & (2)	S12.1	

T PICAL PRESTRESSED PLAN ELEVATION

Scale: $\frac{3}{8}$ " = 1'-0"

	i idini it	i idiik KE
'A'	32	24
'B'	6	4
'C'	0	2
P _(e) [kips]	1,144	880
C.G.S. [in]	3.25	4.25
'D' [in]	2.5	2.5
'S' [in]	2	3

Reinforcing not shown for clarity.

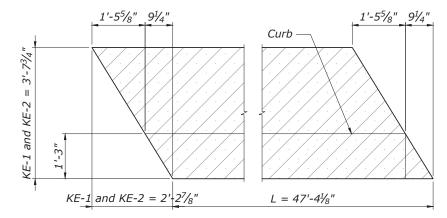
Required Actions:

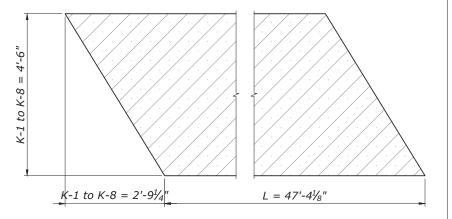
3" (K-1 thru K-8)

concrete

 $1\frac{1}{2}$ " (KE-1 and KE-2)

Estimated plank camber


before placement of deck


Precast slab position before

placement of deck concrete

- 1. Measure slab camber prior to setting deck forms. If the actual camber exceeds the estimated slab camber (3" for interior planks and $1\frac{1}{2}$ " for exterior planks) by more than 1", the fillet will have to be increased by raising profile grade as directed by the owner.
- 2. Set the deck forms and camber the deck machine screed rails to offset the slab deflections $(\frac{1}{2})$ due to deck placement.
- 3. Bridge precast slab seat elevations were calculated using dead load deflections of the deck so that top of precast slab will be a minimum of 1" below bottom of deck at any point in the span, allowing for precast slab depth and slab camber tolerance.

CL Bearing

Deflection Equation:

 $\Delta = \frac{1}{2}" - X^2(1092.8^{-1})$

Where:

CL Bearing

 $\frac{1}{2}$ " Deflection (Δ)

due to placement

of deck concrete

Final position

of precast slab

 Δ = Deflection, in inches, of slab at any point caused by the weight of deck X = Distance, in feet, measured from midspan (See diagram)

Note:

 Δ max = $\frac{1}{2}$ " at X = 0' (Midspan) Δ min = 0" at X = 23'-4 $\frac{1}{2}$ " (CL Bearing)

THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.

T PICAL PRESTRESSED PLAN PLAN

Scale: $\frac{3}{8}$ " = 1'-0"

LICENSED
PROFESSIONAL
ENGINEER
No. 6818-S

HAWAII, U.S.P.

THIS WORK WAS PREPARED BY

ME OR UNDER MY SUPERVISION.

EXPIRATION DATE OF THE LICENSE

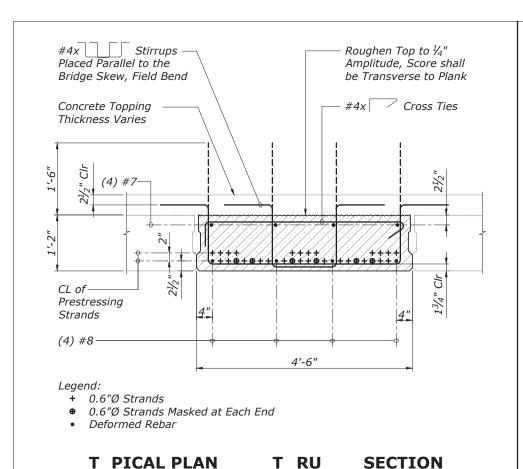
FEDERAL HIGHWAY ADMINISTRATION
CENTRAL FEDERAL LANDS HIGHWAY DIVISION

KAWELA STREAM BRIDGE

U.S. DEPARTMENT OF TRANSPORTATION

KAWELA STREAM BRIDGE KAMEHAMEHA HIGHWAY

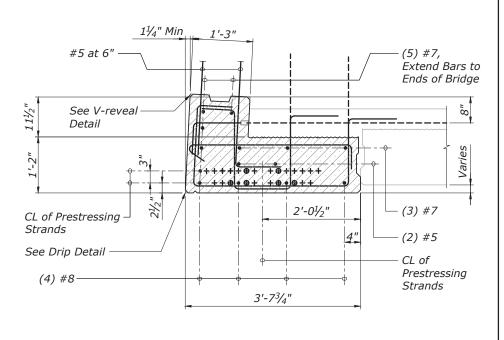
HONOLULU COUNTY, HAWAII


DEC FORM SETTING DIAGRAM

CL Span

Not to Scale

PRESTRESSED PLAN


NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	МН		MH	42 of 50	NOVEMBER 2018	RG3084-P

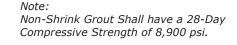
Scale: $\frac{1}{2}$ " = 1'-0"

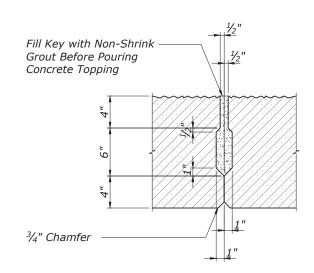
1. Edge of Bridge and Railing Connections shall be at a 2.86° Incline from the Bottom of the Plank.

2. For Balance of Information, See Typical Plank K-1 thru K-8 Section.

T PICAL PLAN E SECTION

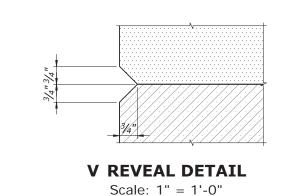
Scale: $\frac{1}{2}$ " = 1'-0"

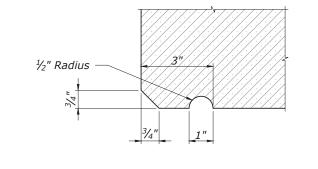

Notes:	STATE	PROJECT
1. Edge of Bridge and Railing Connections	ы	HI STD SD 83(1) 8. (2)


 Edge of Bridge and Railing Connections shall be at a 2.86° Incline from the Bottom of the Plank.
 For Balance of Information, See Typical

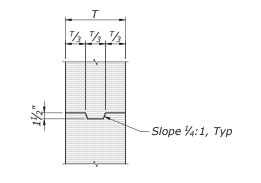
Plank K-1 thru K-8 Section. 1'-3" (5) #7, -#5 at 6" Extend Bars to Ends of Bridge See V-reveal Detail <u>++0004/+0004+-</u> ˈ*(3) #7* — 2'-01/2" CL of Prestressing (2) #5 — Strands See Drip Detail CL of -Prestressing (4) #8 Strands 3'-73/4" 13/16"

T PICAL PLAN E SECTION


Scale: $\frac{1}{2}$ " = 1'-0"



E DETAIL


Scale: 1" = 1'-0"

DRIP DETAIL

Scale: 1" = 1'-0"

CURB E DETAIL

Scale: $\frac{1}{2}$ " = 1'-0"

THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

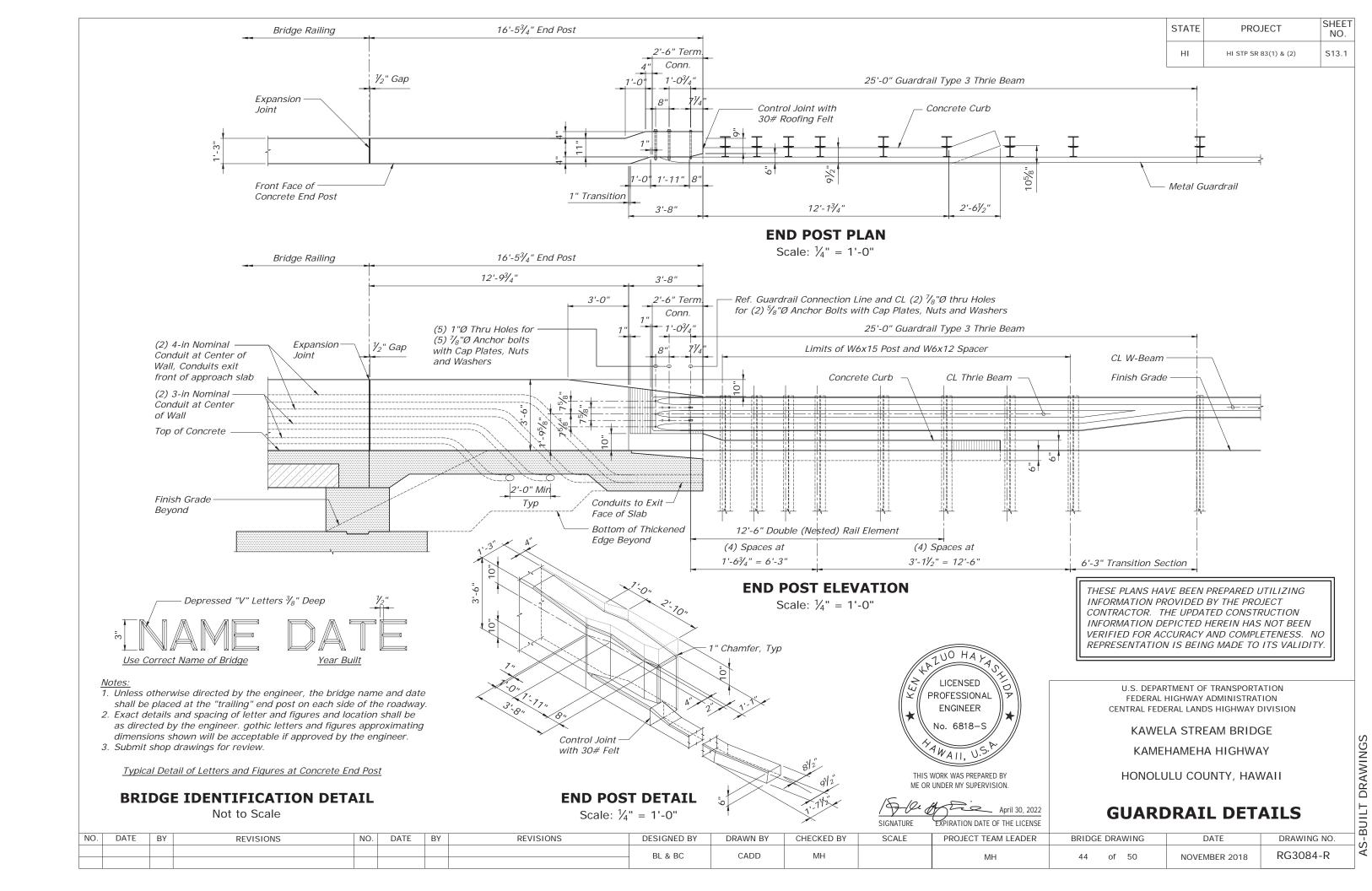
THESE PLANS HAVE BEEN PREPARED UTILIZING

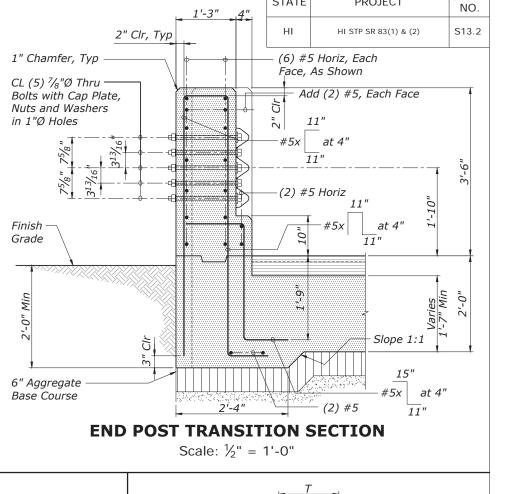
CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.

INFORMATION PROVIDED BY THE PROJECT

KAWELA STREAM BRIDGE KAMEHAMEHA HIGHWAY

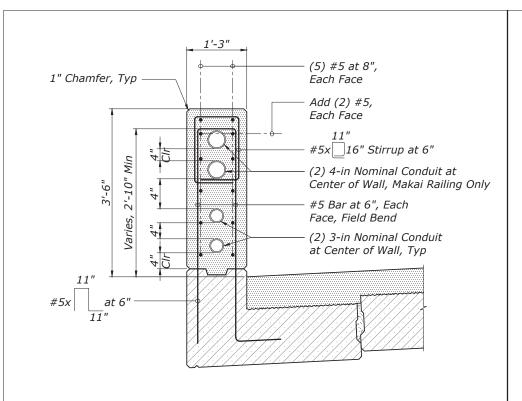
HONOLULU COUNTY, HAWAII


PLAN SECTIONS


NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		MH	43 of 50	NOVEMBER 2018	RG3084-Q
								DE & DO	CABB	14111		IVID	43 01 50	NOVEWIDER 2016	1103004 Q

SHEET

NO.


S12.2

STATE

PROJECT

RAILING SECTION

Scale: $\frac{1}{2}$ " = 1'-0"

Typical Horizontal

Top of Cast-in-Place

1/2" Thick Premolded

4-in Nominal Conduit at Center of Wall, Typ

Top of Prestressed

Plank Edge Beam

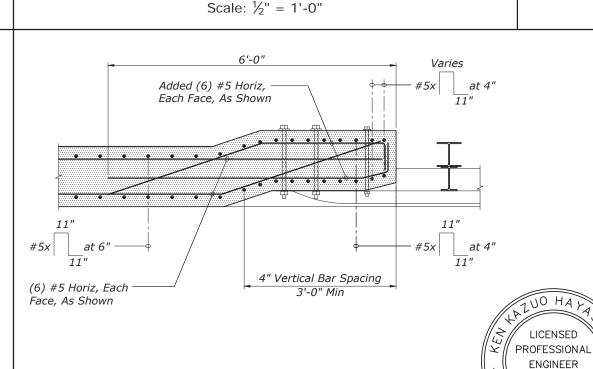
Top of Concrete

Topping Beyond

Expansion Joint Coupling, Typ

Bottom of Prestressed Plank

4-in Nominal Conduit


Reinforcing

Joint Filler

Railing

 $\frac{1}{2}$ " Joint

2" Clr, Typ

2'-0"

END POST SECTION

2" Clr, Typ

(6) #5 Horiz, Each

Add (2) #5, Each Face

Wall, Makai Railing Only

(2) 3-in Nominal Conduit

Slope 1:1

at Center of Wall, Typ

(2) 4-in Nominal Conduit at Center of

(2) #5

Face, As Shown

1" Chamfer, Typ

Finish -

Grade

11"

at 6

#5x

6" Aggregate

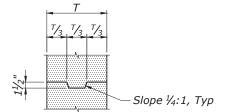
Base Course

RAILING E PANSION OINT DETAIL

Scale: $\frac{1}{2}$ " = 1'-0"

END POST TRANSITION PLAN SECTION

Scale: $\frac{1}{2}$ " = 1'-0"



THIS WORK WAS PREPARED BY

ME OR UNDER MY SUPERVISION.

No. 6818-5

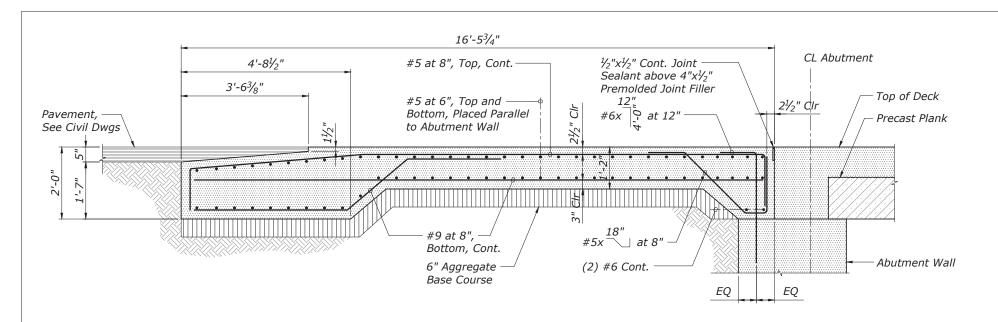
AWAII, U

S EAR E DETAIL

Scale: $\frac{1}{2}$ " = 1'-0"

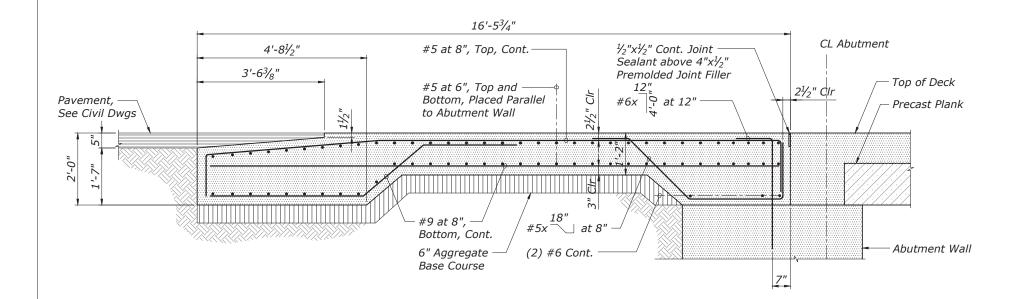
THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION


> KAWELA STREAM BRIDGE KAMEHAMEHA HIGHWAY

HONOLULU COUNTY, HAWAII

RAILING SECTION


NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		MLI	45 of 50	NOVEMBER 2018	RG3084-S
								DL & DC	CADD	IVIII		IVIII	45 01 50	NOVEWIDER 2016	103004 3

SHEET

ABUTMENT NO APPROAC SLAB SECTION

Scale: $\frac{3}{8}$ " = 1'-0"

ABUTMENT NO APPROAC SLAB SECTION

Scale: $\frac{3}{8}$ " = 1'-0"

THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

Т	PICAL
APPROAC	SLAB SECTIONS

NO. DATE REVISIONS DATE REVISIONS DESIGNED BY DRAWN BY CHECKED BY PROJECT TEAM LEADER BRIDGE DRAWING DATE DRAWING NO. BY NO. BY SCALE BL & BC CADD of 50 NOVEMBER 2018 RG3084-T MH 46

NOTES:

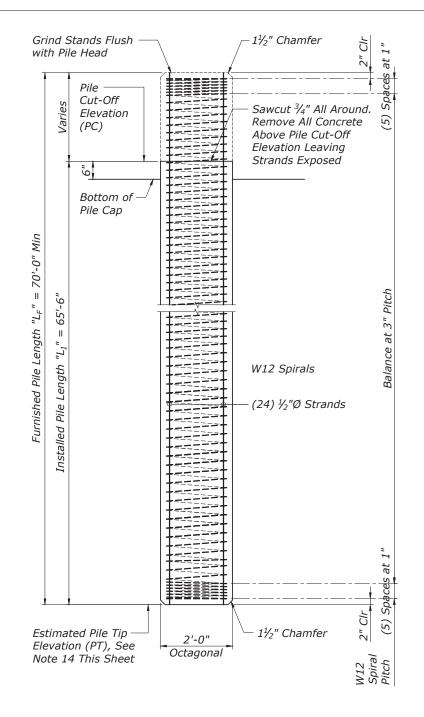
- 1. The orientation of the view is parallel to the centerline of the bridge.
- 2. Abutment and deck reinforcing not shown for clarity.

STATE	PROJECT	SHEET NO.
ні	HI STP SR 83(1) & (2)	S14.1

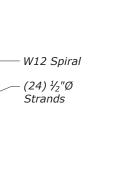
THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

> KAWELA STREAM BRIDGE KAMEHAMEHA HIGHWAY


HONOLULU COUNTY, HAWAII

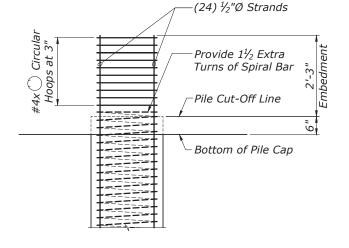
BUILT DRAWINGS


Precast Prestressed Pile Notes:

- 1. Prestressed concrete 28 day compressive strength, f'c = 6,000 psi. Prestressed concrete strength at time of release, f'c = 4,500 psi.
- 2. Pile build-up concrete 28 day compressive strength (with and without driving), f'c = 6,000 psi.
- 3. Prestressing strands shall be 7 wire, $\frac{1}{2}$ "Ø low relaxation steel strands (area = 0.153 in²) with an ultimate tensile strength of 270 ksi, initial strand stress (before any losses) = 202.5 ksi.
- 4. Non-prestressed reinforcing steel shall be deformed bars conforming to AASHTO M31, grade 60. spiral reinforcement shall conform to AASHTO M32.
- 5. The effective prestressing force in the pile after all losses shall be 595 kips.
- 6. Piles accepted by the engineer shall be of sound concrete. damaged piles shall be replaced or repaired as directed by the engineer at the contractor's expense.
- 7. Each pile location shall be predrilled to an elevation of -40.0 feet MSL. The diameter of the predrilled holes shall be limited to the diagonal dimension of the pile to provide the driven piles with sufficient soil/rock contact for lateral load resistance. The annular space between piles and predrilled holes shall be filled with sand. The predrilling depths shall be confirmed and/or modified by the geotechnichal engineer of record during construction.
- 8. Piles shall be driven with a hammer capable of delivering a minimum rated energy of approximately 60,000 foot pounds of energy. The hammer shall be equipped with energy control level. Prior to construction, pile and driving equipment data forms shall be reviewed and approved by the engineer.
- Piles shall be driven continuously without interruption. Piles may be rejected when the driving resistance is interrupted for more than four hours and the pile cannot be driven to the required depth.
- 10. The geotechnical engineer should be present during all pile driving operations to observe the actual driving behavior and to further evaluate the field performance.
- 11. Work of cutting off prestressed concrete piles or concrete pile build-ups shall be performed in such a manner as to avoid spalling or damaging of the pile below cut off.

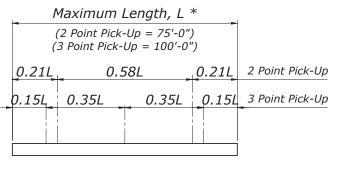
 Damaged portions shall be removed and pile cut-off elevation lowered as directed by the engineer.
- 12. Top of pile at cut-off line shall be prepared as required for construction joint in the specifications.
- 13. Pile splice will not be permitted.
- 14. Estimated Pile Tip Elevation (PT) is -60.0 feet MSL.

STATE	PROJECT	SHEET NO.	
НІ	HI STP SR 83(1) & (2)	S15.1	



PILE CROSS SECTION

Octagonal


Scale: $\frac{3}{8}$ " = 1'-0"

2" Clr, Typ

PILE EMBEDMENT DETAIL

Scale: $\frac{3}{8}$ " = 1'-0"

* The length "L" is the distance end to end of pile.

PRESTRESSED PILE DETAIL

Scale: $\frac{3}{8}$ " = 1'-0"

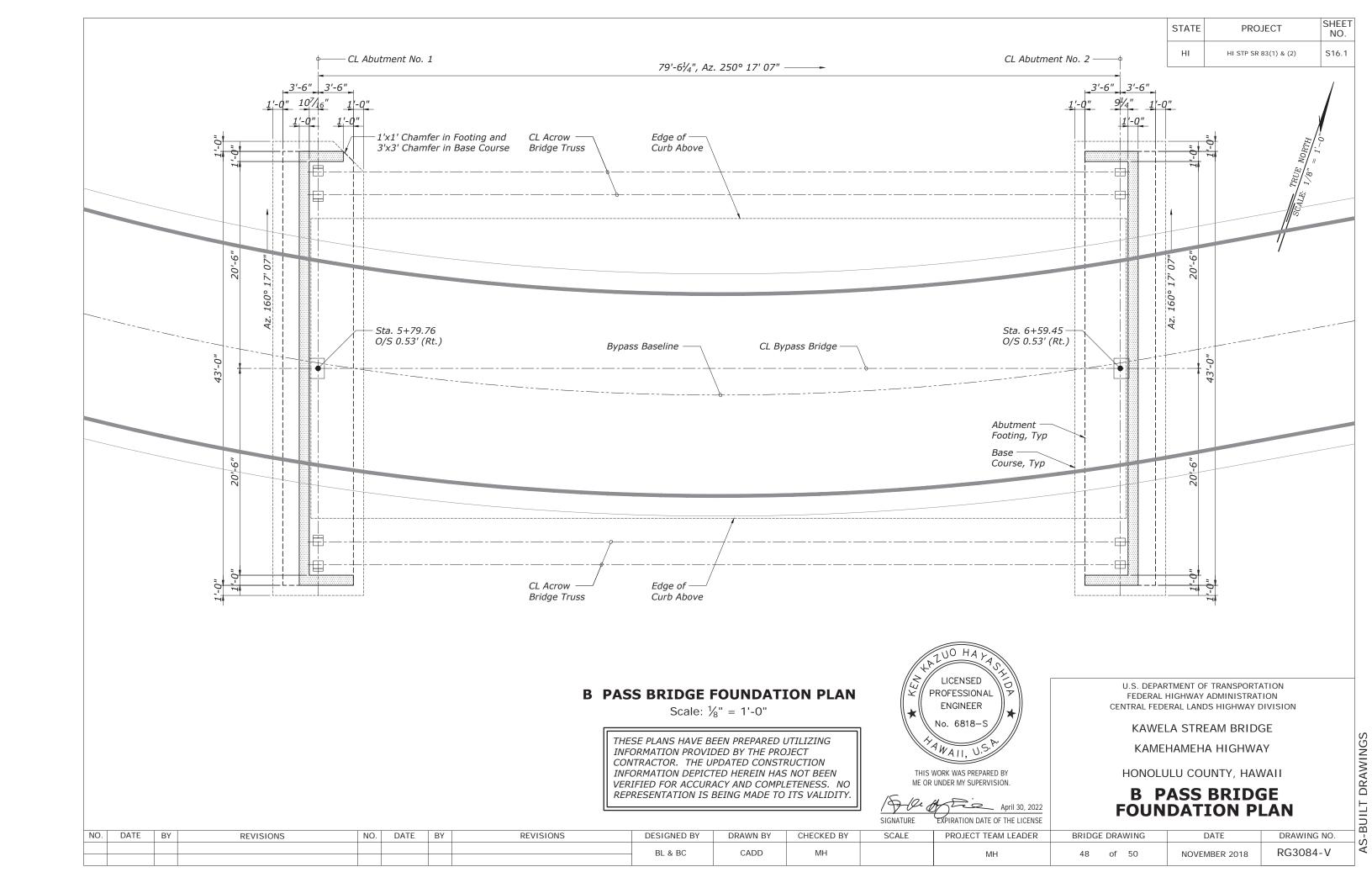
THESE PLANS HAVE BEEN PREPARED UTILIZING
INFORMATION PROVIDED BY THE PROJECT
CONTRACTOR. THE UPDATED CONSTRUCTION
INFORMATION DEPICTED HEREIN HAS NOT BEEN
VERIFIED FOR ACCURACY AND COMPLETENESS. NO
REPRESENTATION IS BEING MADE TO ITS VALIDITY.

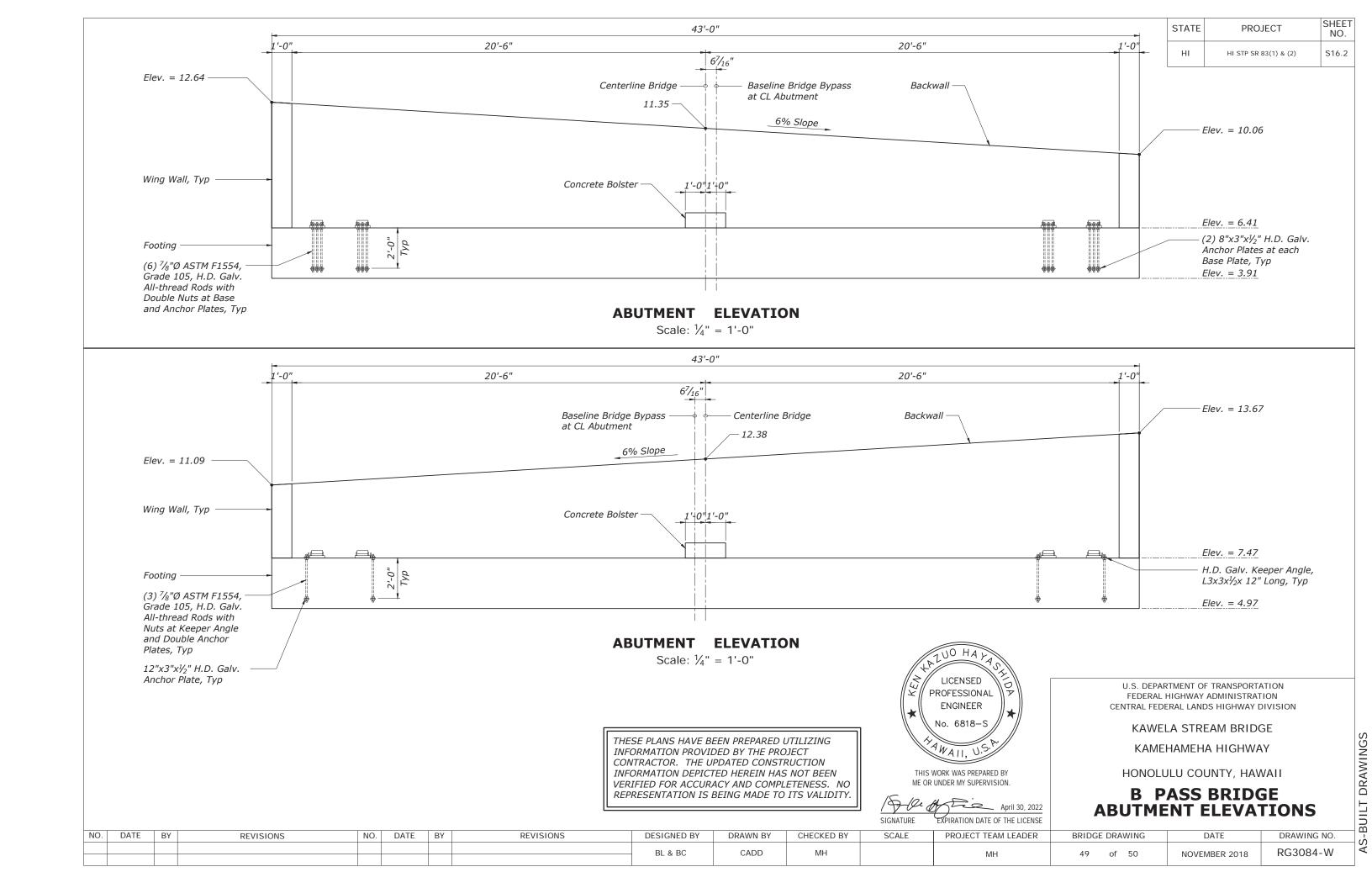
THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

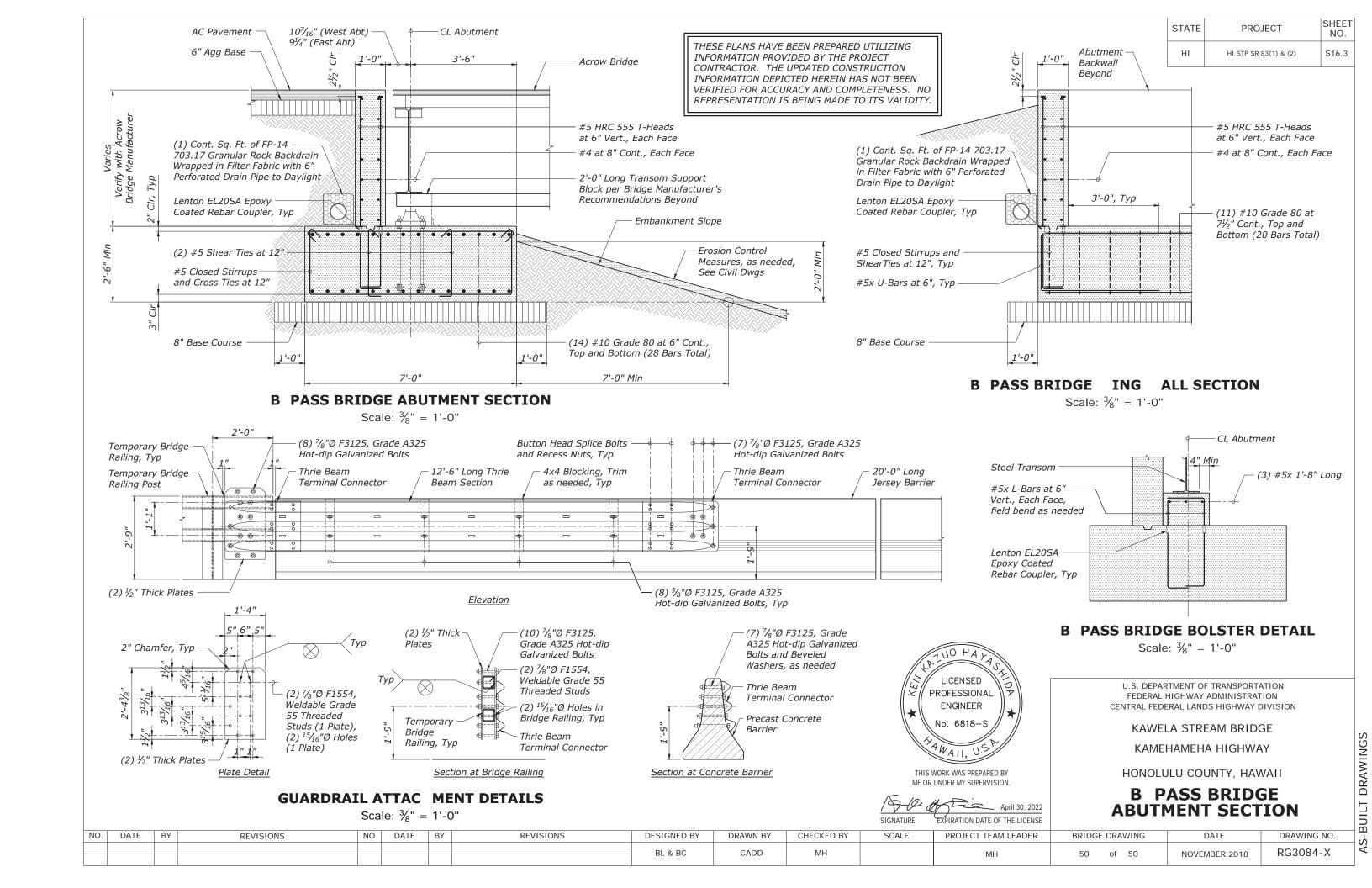
April 30, 2022
SIGNATURE EXPIRATION DATE OF THE LICENSE

PILE PIC UP POINTS

Not to Scale


U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION


KAWELA STREAM BRIDGE KAMEHAMEHA HIGHWAY


HONOLULU COUNTY, HAWAII

T PICAL PRESTRESSED PILE NOTES AND DETAILS

NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	МН		MILI	47 of 50	NOVEMBER 2018	RG3084-U
								DE & DC	CADD	IVIII		IVID	47 01 50	NOVEWBER 2016	1100004 0

RAWING NO.	SHEET	DESCRIPTION
RG3083-A	S0.1	INDEX TO BRIDGE DRAWINGS
RG3083-B	S0.2	STRUCTURAL GENERAL NOTES
RG3083-C	S0.3	QUANTITY SCHEDULE
RG3083-D	S0.4	EXISTING BRIDGE DEMOLITION PLAN
RG3083-E	S0.5	EXISTING BRIDGE ABUTMENT ELEVATIONS
RG3083-F	S1.1	BRIDGE LAYOUT PLAN
RG3083-G	S1.2	BRIDGE FOUNDATION PLAN
RG3083-H	S1.3	BRIDGE ABUTMENT PLAN
RG3083-I	S1.4	BRIDGE DECK FRAMING PLAN
RG3083-J	S2.1	LONGITUDINAL SECTION
RG3083-K	S2.2	TYPICAL CROSS SECTION
RG3083-L	S3.1	ABUTMENT NO. 1 ELEVATION
RG3083-M	S3.2	ABUTMENT NO. 2 ELEVATION
RG3083-N	S3.3	ABUTMENT NO. 1 DETAIL
RG3083-O	S3.4	ABUTMENT NO. 2 DETAIL
RG3083-P	S3.5	GRS ABUTMENT DETAILS - 2
RG3083-Q	S3.6	TYPICAL GRS ABUTMENT DETAILS
RG3083-R	S4.1	PRESTRESSED PLANK
RG3083-S	S4.2	PLANK SECTIONS
RG3083-T	S5.1	GUARDRAIL DETAILS
RG3083-U	S5.2	RAILING SECTION - 1
RG3083-V	S5.3	RAILING SECTION - 2
RG3083-W	S6.1	TYPICAL APPROACH SLAB SECTION
RG3083-X	S7.1	BYPASS BRIDGE FOUNDATION PLAN
RG3083-Y	S7.2	BYPASS BRIDGE ABUTMENT ELEVATIONS
RG3083-Z	S7.3	BYPASS BRIDGE ABUTMENT SECTION

NANAHU CONSTRUCTION AND CONCRETE PLACEMENT SEQUENCE:

- 1. Abutment 2 Ecoblock Cap
- 2. Cantilever Beam Footing
- 3. Plank Seats and 6" Slab-On-Grade
- 4. Bridge Deck
- 5. Approach Slab
- 6. Barrier Railing (Mauka Abutment 2 and Makai Abutment 1)
- 7. Barrier Railing (Mauka Abutment 1 and Makai Abutment 2)
- s. End Pos

STATE	PROJECT	SHEET NO.	
НІ	HI STP SR 83(1) & (2)	S0.1	

THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

April 30, 2022
SIGNATURE EXPIRATION DATE OF THE LICENSE

THESE PLANS HAVE BEEN PREPARED UTILIZING
INFORMATION PROVIDED BY THE PROJECT
CONTRACTOR. THE UPDATED CONSTRUCTION
INFORMATION DEPICTED HEREIN HAS NOT BEEN
VERIFIED FOR ACCURACY AND COMPLETENESS. NO
REPRESENTATION IS BEING MADE TO ITS VALIDITY.

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

NANAHU (HOOLAPA) STREAM BRIDGE
KAMEHAMEHA HIGHWAY
HONOLULU COUNTY, HAWAII

INDE TO BRIDGE DRA INGS

NO.	DATE	BY	REVISIONS	NO.	DATE	ВҮ	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	МН		МН	1 of 50	NOVEMBER 2018	RG3083-A

GENERAL:

- A. Design standards: AASHTO LRFD Bridge Design Specification, 7th Edition, 2014 as amended by State of Hawaii Department of Transportation Highways Division Design Criteria for Bridges and Structures, August 8, 2014.
- B. The Contractor shall compare all the contract documents with each other and report in writing to the Engineer all inconsistencies and omissions.
- C. The contractor shall take field measurements and verify field conditions and shall compare such field measurements and conditions with the drawings. Report in writing to the Engineer all inconsistencies and omissions.
- D. The contractor shall be responsible for coordinating the work of all trades.
- E. The contractor shall be responsible for means and methods of construction, workmanship and job safety.
- F. The contractor shall provide temporary shoring and bracing as required for stability of structural members and systems.
- G. Construction loading shall not exceed design live load unless special shoring is provided. Permitted construction loads shall be properly reduced in areas where the structure has not attained full design strength.
- H. The contractor shall be responsible for protection of the adjacent properties, structures, streets and utilities during the construction period. Any damaged or deteriorated property shall be restored to the condition prior to the beginning of work or better at no cost to the state.
- Details noted as typical on the structural drawings shall apply in all conditions unless specifically shown or noted otherwise.

DESIGN CRITERIA:

- A. Live loads
 - 1. Vehicular: HL-93
- 2. Bridge railing: in accordance with AASHTO TL-3
- B. Lateral loads
 - 1. Seismic
 - a. Spectral response acceleration coefficients
 - *i)* Short period, s₅: 0.363g
 - ii) 1-sec period, s_1 : 0.099g
 - b. Site Class: D c. Seismic Zone: 2
- C. Soils
 - 1. Strength limit state bearing capacity
 - a. GRS abutments and approach slabs: 6,100 psf
 - b. Bypass bridge abutments: 4,000 psf
 - 2. Earth pressure
 - a. Active (level backfill):
 - i) Unrestrained 53 pcf
 - *ii)* Restrained: 74 pcf b. Passive:
 - i) Strength limit state: 94 pcf
 - ii) Extreme limit state: 188 pcf
 - 3. Coefficient of friction strength limit state: 0.44
- 4. Coefficient of friction extreme event limit state: 0.55
 D. Future wearing surface (curb to curb): 25 psf
- E. Future utility line each side of bridge: 150 plf

FOUNDATION:

- A. Foundation design is based on the Geotechnical Exploration and Evaluation Report, dated August 2019.
- B. Contractor shall provide de-watering of excavated areas, as required.
- Footings shall bear on undisturbed in-situ firm soils bottom of footings shall be compacted to provide a relatively firm and smooth bearing surface prior to placement of reinforcing steel and concrete. If soft and/or loose materials are encountered at the bottom of footing excavations, they shall be over-excavated to expose the underlying firm materials. The over-excavated area shall be backfilled with select granular material compacted to a minimum of 95% relative compaction or the footing bottom may be extended down to the underlying competent material. Contractor may substitute flowable concrete or the granular material upon approval from the Engineer.
- D. Excavations for footings shall be approved by the Geotechnical Engineer of Record prior to placement of concrete and reinforcing.
- E. Engineered fill and backfill shall be in accordance with FP-14 and associated SCR's.
- F. Fill should be moisture conditioned to within two percent of the optimum moisture content and placed in horizontal lifts not to exceed six inches. Fill shall be compacted to minimum 95%relative density as measured by AASHTO T180.

CONCRETE:

- A. Concrete construction shall conform to the FP-14 Specifications and associated SCR's.
- B. Concrete shall be normal weight hard rock concrete and shall have the following minimum 28 day compressive strength or comply with class of concrete compressive strength listed in the FP-14 Specifications:

1.	Pre-stressed piles	6000 psi
2.	Pre-stressed planks	8000 psi

- Pre-stressed planks 8000 psi
 Abutment footings and pile caps Class A
- 4. Slab topping, approach slabs, and railings Class A
- 5. Abutment walls and wing walls Class A
 6. All other concrete Class A
- C. Concrete delivery tickets shall record all free water in the mix at batching plant, added for consistency by driver, and any additional request by contractor up to the maximum amount allowed by the mix design.
- D. All inserts, anchor bolts, plates, and other items to be cast in the concrete shall be hot-dipped galvanized according to ASTM A153 unless otherwise noted.
- E. Reinforcing bars, anchor bolts, inserts, and other items to be cast in the concrete shall be secured in position prior to placement of concrete.
- F. Conduits, pipes, and sleeves passing through a slab or footing that do not conform to typical details shall be located and the proposed construction detail submitted to the Engineer for approval.
- G. Conduits, pipes, and sleeves embedded within a slab or wall (other than those merely passing through) shall be:
 - No larger in outside dimensions than one third the overall slab or wall thickness in which they are embedded.
 - 2. Placed in the middle one third of slab or wall thickness
 - 3. Spaced no closer than three diameters or widths on center.
- H. Conduits, pipes, and sleeves shall not be placed through or embedded in a beam unless specifically detailed.

- The contractor shall locate construction joints not shown on the drawings, so as not to impair the strength of the structure and to minimize shrinkage stresses. Submit proposed locations of construction joints to the Engineer for approval.
- J. Non-shrink grout shall be a premixed non-metallic formula, shall be capable of developing a minimum compressive strength of 5,000 psi in 3 days and 8,900 psi in 28 days, and shall contain at least 10 grams of migrating amine carboxylate corrosion inhibitor when grout is in contact with steel appurtenances. Precast plank shear keys will not require corrosion inhibitor.
- K. Joint filler shall conform to FP-14 section 712.01(b).
- L. A shrinkage reducing admixture conforming to SCR section 711.03(b) shall be included in the concrete mix for all cast-in-place concrete.
- M. A corrosion inhibiting admixture conforming to SCR section 711.03(a) shall be included in the concrete mix for all concrete.
- N. Reinforcing fibers conforming to SCR section 725.17(b) shall be included in the concrete mix for members as specified in SCR section 552.03.

MASONRY:

- A. Concrete masonry units shall conform to ASTM C90 for normal weight load-bearing concrete masonry units with a unit compressive strength of 3050 psi.
- B. Second-hand masonry units shall not be reused unless they conform to the requirements of new units. The units shall be of whole, sound materials and free from cracks and other defects that will interfere with proper laying and use. Old mortar shall be cleaned from the unit before reuse.
- C. All cells and bond courses with reinforcement and inserts shall be concrete filled.
- D. When concrete filling is stopped for one hour or longer, horizontal construction joints shall be formed by stopping the concrete pour 1 1/2 inches below the top of the uppermost unit.
- E. Walls shall be constructed in conventional running bond, unless otherwise noted.
- F. Open-ended blocks shall not be substituted for standard concrete masonry units.

THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

April 30, 2022
SIGNATURE EXPIRATION DATE OF THE LICENSE

THESE PLANS HAVE BEEN PREPARED UTILIZING
INFORMATION PROVIDED BY THE PROJECT
CONTRACTOR. THE UPDATED CONSTRUCTION
INFORMATION DEPICTED HEREIN HAS NOT BEEN
VERIFIED FOR ACCURACY AND COMPLETENESS. NO
REPRESENTATION IS BEING MADE TO ITS VALIDITY.

STATE

ΗΙ

PROJECT

HI STP SR 83(1) & (2)

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

NANAHU (HOOLAPA) STREAM BRIDGE KAMEHAMEHA HIGHWAY

HONOLULU COUNTY, HAWAII

STRUCTURAL GENERAL NOTES

NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		MALA	2 of 50	NOVEMBER 2018	RG3083-B
								DL & DC	OADD	IVIII		IVIII	2 01 50	NOVEWBER 2016	100000 D

SHEET

NO.

S0.2

REINFORCING STEEL:

- A. Reinforcing steel shall be deformed bars conforming to AASHTO M31, Grade 60, unless otherwise noted.
- B. Low alloy steel deformed bars shall conform to FP-14 section 709.01(i), Grade 60, unless otherwise noted.
- C. Clear concrete cover for reinforcing bars shall be as follows, unless otherwise noted:
 - 1. Footings, slabs, etc. cast against earth: 3"
 - 2. Footings, walls, grade beams, etc. formed and exposed to earth or weather: 2"
 - 3. Bridge deck top reinforcement: 2-1/2"
 - 4. Other: 2"
- D. Reinforcing steel shall be spliced where indicated on plans. Provide lap splice length per typical details and schedule, unless otherwise noted.
- E. Mechanical splice connectors shall develop in tension 125 percent of the specified minimum yield strength of reinforcing bars.
- F. Provide standard hooks conforming to ACI SP-66.
- G. Fabricate reinforcing bars according to ACI SP-66, ACI Detailing Manual.
- H. Reinforcing steel shall be placed and secured in conformance with crsi manual of standard practice with placement tolerances per ACI standard 117.

STRUCTURAL STEEL:

- A. Fabrication and erection of structural steel shall conform to the american institute of steel construction manual of steel construction, thirteenth edition.
- B. Structural steel shall conform to ASTM A36 unless otherwise noted.
- C. Steel wide flange sections shall conform to ASTM A992.
- D. Plates and bars shall conform to ASTM A36.
- E. Welds and welding procedures shall conform to the structural welding code AWS D1.1 of the american welding society.
- F. Welding shall be performed by welders prequalified for welding procedures to be used.
- G. Welding electrodes shall be E70xx for carbon steel.
- H. High-strength bolts shall conform to ASTM A325, type N. Installation shall be assured by any of the following methods:
 - 1. Turn of nut method
 - 2. Direct tension indicator
 - 3. Calibrated wrench
 - 4. Alternative design bolt
- All anchor bolts, plates, and other items to be cast in concrete shall be hot-dip galvanized according to ASTM A153 unless otherwise noted.
- J. Carbon steel bolts shall conform to ASTM A307, grade a unless otherwise noted, and shall be hot-dip galvanized according to ASTM A153.
- K. All steel shall be hot-dip galvanized after fabrication according to ASTM A123.
- L. Any damaged galvanized surface shall be repaired as follows:
 - 1. prepare surface per sspc-sp1, solvent cleaning.
 - 2. apply two coats of cold applied galvanizing compound containing 95% metallic zinc content by weight in dry film and 52% solids content by volume.
 - 3. application rate shall be 1.5 mils dry film thickness per coat.

TATE	PROJECT	SHEET NO.	
ні	HI STP SR 83(1) & (2)	S0.3	

	LOAL	RATING	G	
	Rating Factor	Distribution Factor	Load Effect	Controlling Member
HL-93 Inventory	1.77	0.328	Positive Moment	Interior Girder
HL-93 Operating	2.29	0.328	Positive Moment	Interior Girder

S

	ESTIMATE			
Item No.	Description	Quantity	Unit	Notes
20304-1000	Removal of structures and obstructions	LPSM	LPSM	-
20435-2000	Backfill, Granular	40	CUYD	(1)
20720-0400	Reinforcement Geosynthetic, Type 4	2320	SQYD	-
20801-0000	Structure excavation	840	CUYD	(2)
20803-0000	Structure backfill (GRS)	550	CUYD	-
55201-1500	Structure Concrete	136	CUYD	(3)
55302-3500	Precast, prestressed concrete slab, 14" solid	500	LNFT	(4)
55401-1000	Reinforcing steel	45400	LB	-
55601-0500	Bridge railing, concrete	137	LNFT	-
61707-0000	Structure Transition Railing	100	LNFT	(5)

ESTIMATE NOTES:

- (1) Includes cost of drain pipes, geocomposite drains, aggregate base course backfill and aggregate subbase course
- (2) Includes cost of GRS backfill excavation
- (3) Includes cost of bridge deck, approach slabs
- (4) Includes cost of concrete, reinforcing steel, prestressing steel, inserts, plates, lifting devices, and other materials required for the manufacture and erection of the planks
- (5) Includes cost of furnishing and installing posts, blocks, thrie and W-beam rail elements, anchor plates, and installation hardware

INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.

THESE PLANS HAVE BEEN PREPARED UTILIZING

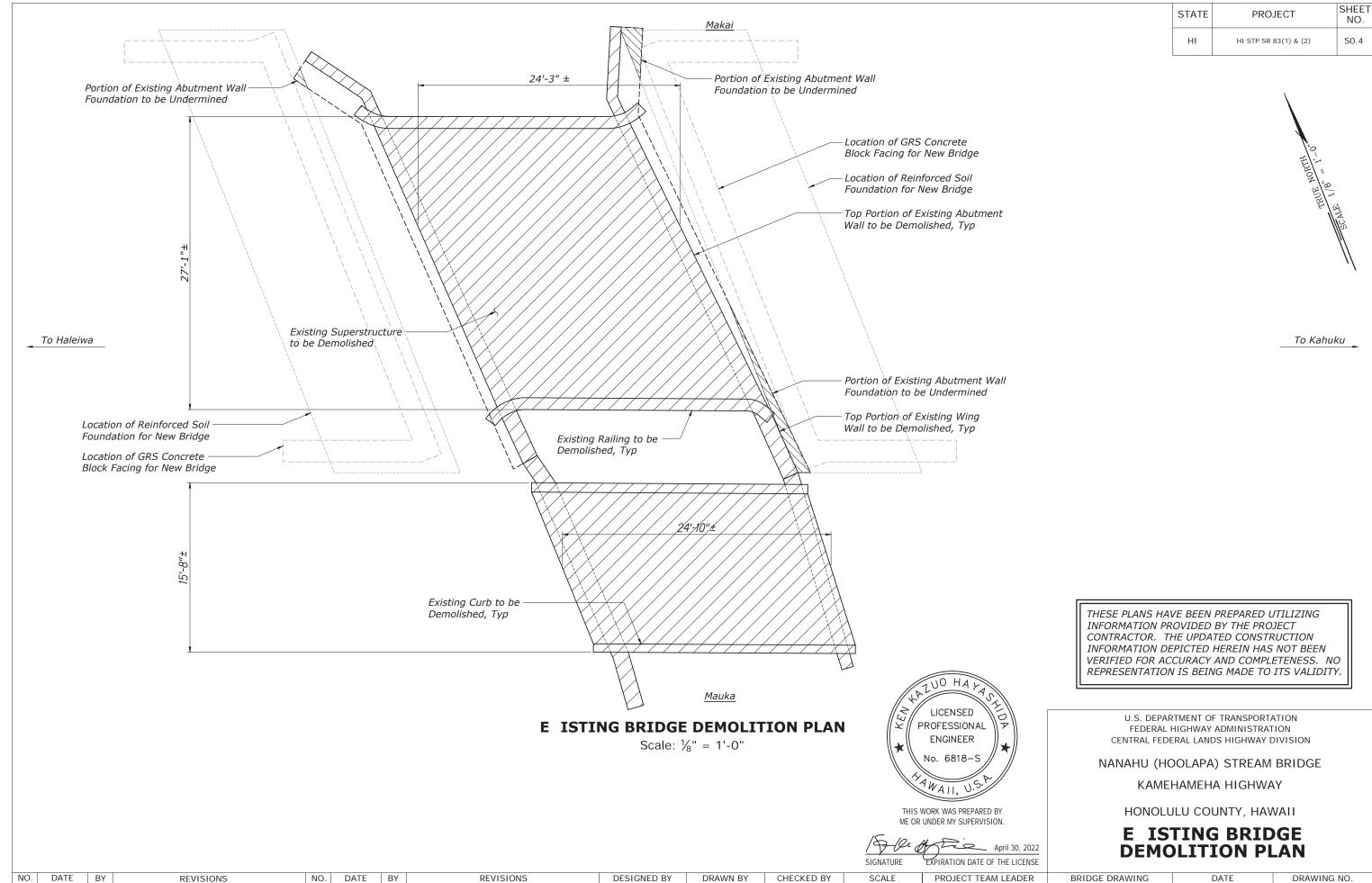
U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

NANAHU (HOOLAPA) STREAM BRIDGE
KAMEHAMEHA HIGHWAY
HONOLULU COUNTY, HAWAII

UANTIT SC EDULE

	UNDER MY SUPERVISION.
15-10 a	April 30, 2022
SIGNATURE	EXPIRATION DATE OF THE LICENSE

LICENSED


PROFESSIONAL

ENGINEER

No. 6818-S

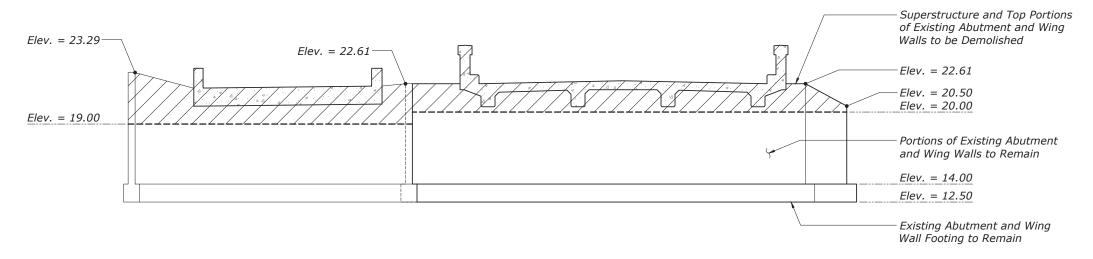
JWAII,

BL & BC CADD MH MH 3 of 50 NOVEMBER 2018 RG3083	NO. DATE	BY	REVISIONS NO	. DATE	BY REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
						BL & BC	CADD	MH		MH	3 of 50	NOVEMBER 2018	RG3083-C

BL & BC

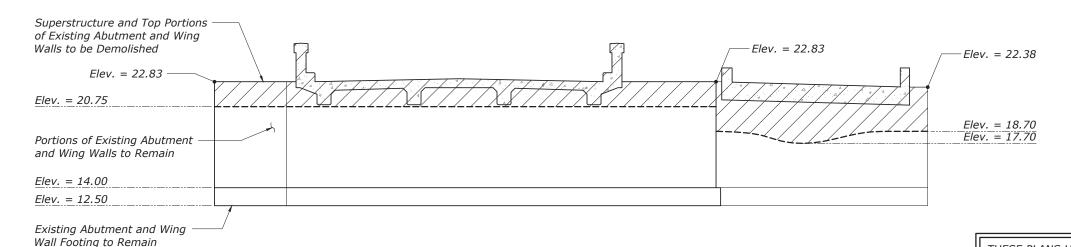
CADD

S-BUILT DRAWINGS


RG3083-D

NOVEMBER 2018

4


МН

of 50

E ISTING BRIDGE EST ABUTMENT FRONT ELEVATION

Scale: $\frac{1}{8}$ " = 1'-0"

E ISTING BRIDGE EAST ABUTMENT FRONT ELEVATION

Scale: $\frac{1}{8}$ " = 1'-0"

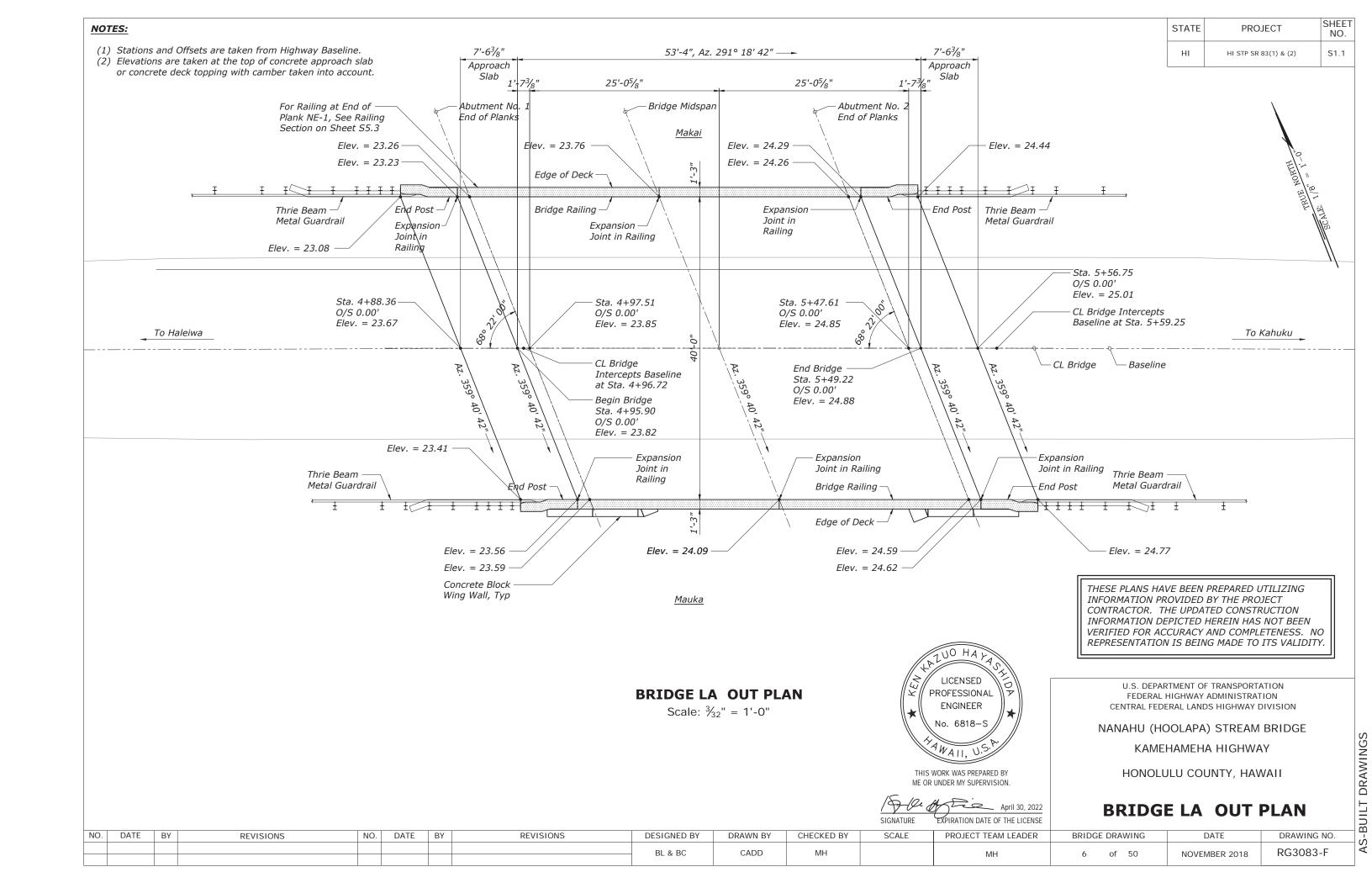
NOTES:

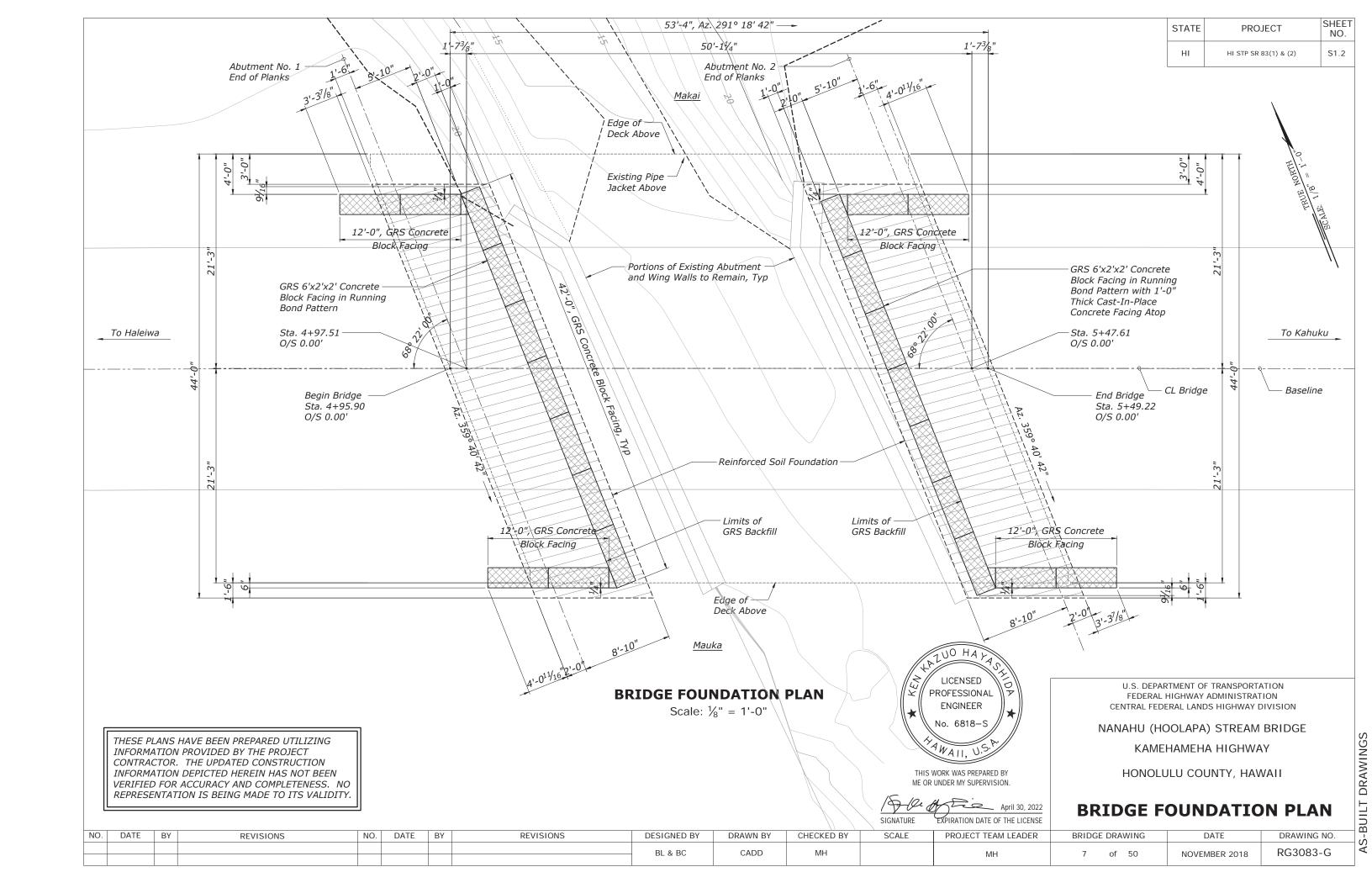
- 1. The orientations of the views are perpendicular to the baseline of the highway.
- 2. Temporary shoring shall be used as needed to maintain the integrity and stability of the existing abutment walls until the bridge concrete deck topping has been placed.

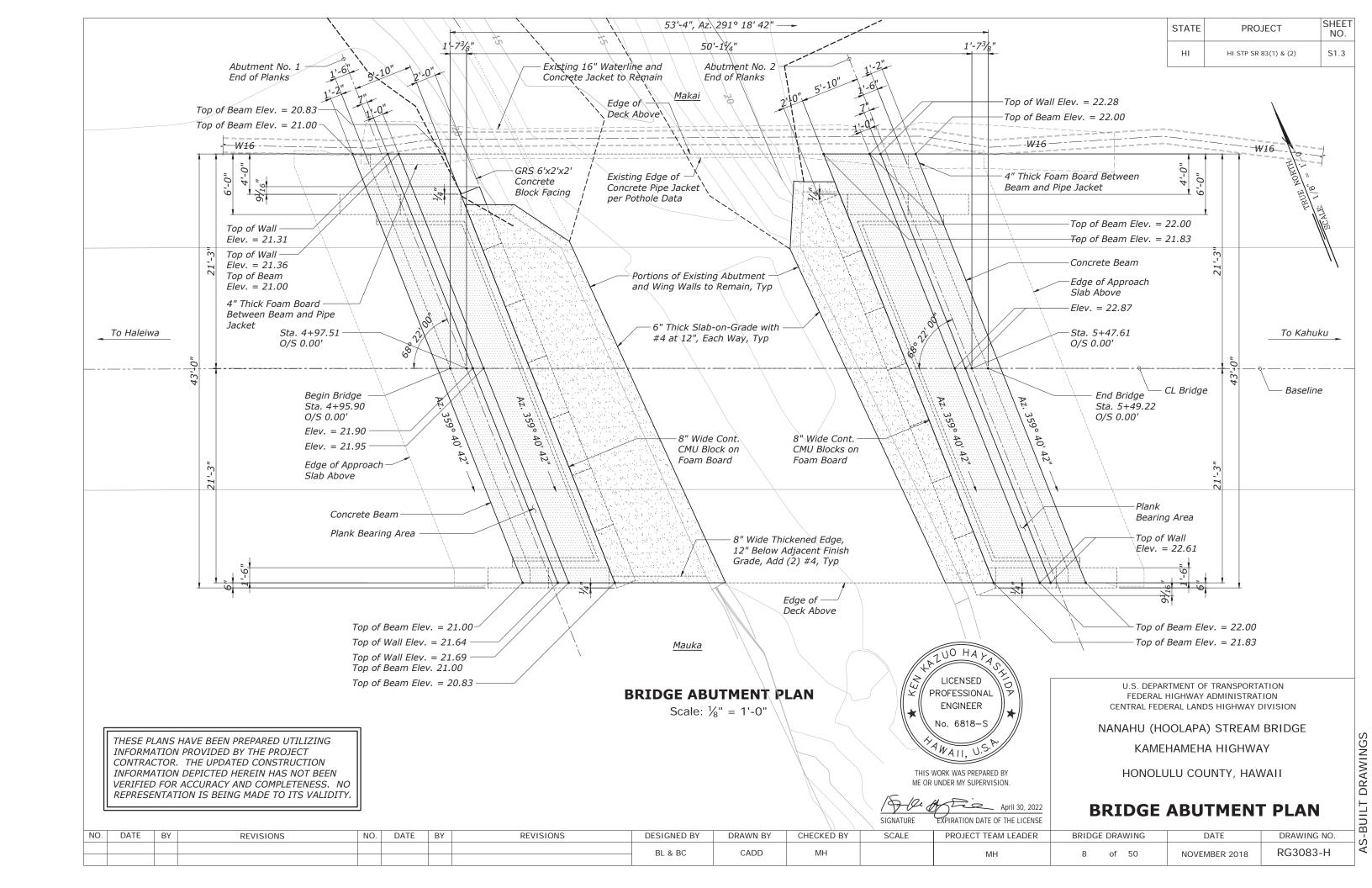
THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

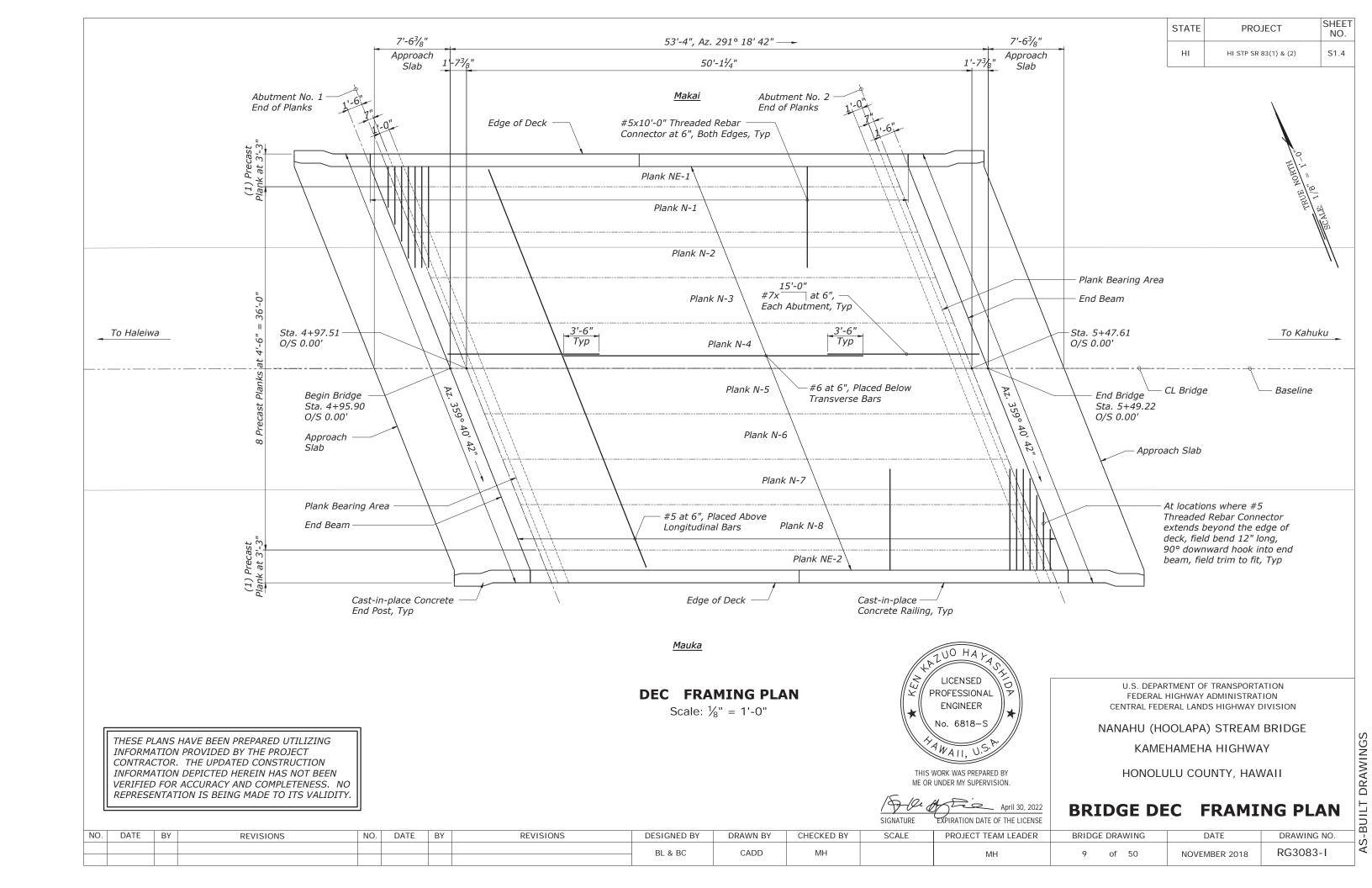
April 30, 2022
SIGNATURE EXPIRATION DATE OF THE LICENSE

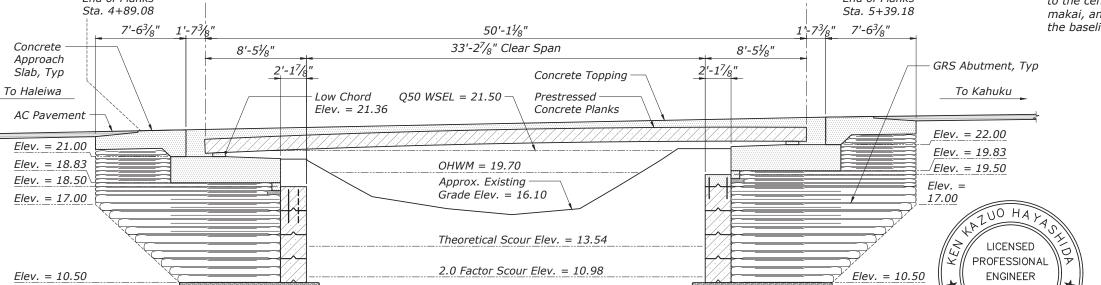
THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.


U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION


NANAHU (HOOLAPA) STREAM BRIDGE KAMEHAMEHA HIGHWAY


HONOLULU COUNTY, HAWAII


E ISTING BRIDGE ABUTMENT ELEVATIONS


NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		MLI	5 of 50	NOVEMBER 2018	RG3083-E
								DL & DC	CADD	IVIII		IVID	5 01 50	NOVEWIBER 2016	1103003 E

BRIDGE LONGITUDINAL SECTION AT NORT EDGE OF DEC

Elev. = 9.00

Reinforced Soil Foundation,

Encapsulated Geotextile, Typ

8'-51/8"

3'-23/4"

Scale: $\frac{1}{8}$ " = 1'-0"

April 30, 2022
SIGNATURE EXPIRATION DATE OF THE LICENSE

No. 6818-S

THIS WORK WAS PREPARED BY

ME OR UNDER MY SUPERVISION.

AWAII, U

Elev. = 9.00

THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

NANAHU (HOOLAPA) STREAM BRIDGE KAMEHAMEHA HIGHWAY

HONOLULU COUNTY, HAWAII

LONGITUDINAL SECTION

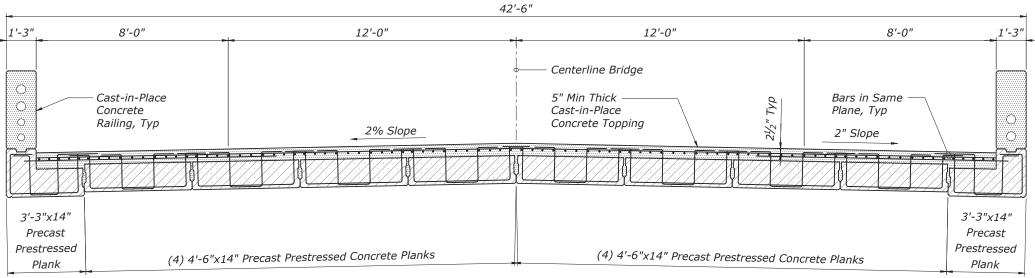
NO. DATE	BY	REVISIONS NO.	DATE	BY REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
					BL & BC	CADD	МН		МН	10 of 50	NOVEMBER 2018	RG3083-J

3'-23/4"

8'-51/8"

SHEET

NO.


S2.1

PROJECT

HI STP SR 83(1) & (2)

NOTE:

The cross section is taken at the midspan of the bridge and the oriantation of the view is perpendicular to the centerline of the bridge.

Channel Invert –

Elev, Varies

T PICAL BRIDGE CROSS SECTION

Scale: $\frac{1}{4}$ " = 1'-0"

LICENSED PROFESSIONAL ENGINEER
No. 6818-S

WAII, U.S.

THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

April 30, 2022
SIGNATURE EXPIRATION DATE OF THE LICENSE

THESE PLANS HAVE BEEN PREPARED UTILIZING
INFORMATION PROVIDED BY THE PROJECT
CONTRACTOR. THE UPDATED CONSTRUCTION
INFORMATION DEPICTED HEREIN HAS NOT BEEN
VERIFIED FOR ACCURACY AND COMPLETENESS. NO
REPRESENTATION IS BEING MADE TO ITS VALIDITY.

STATE

HI

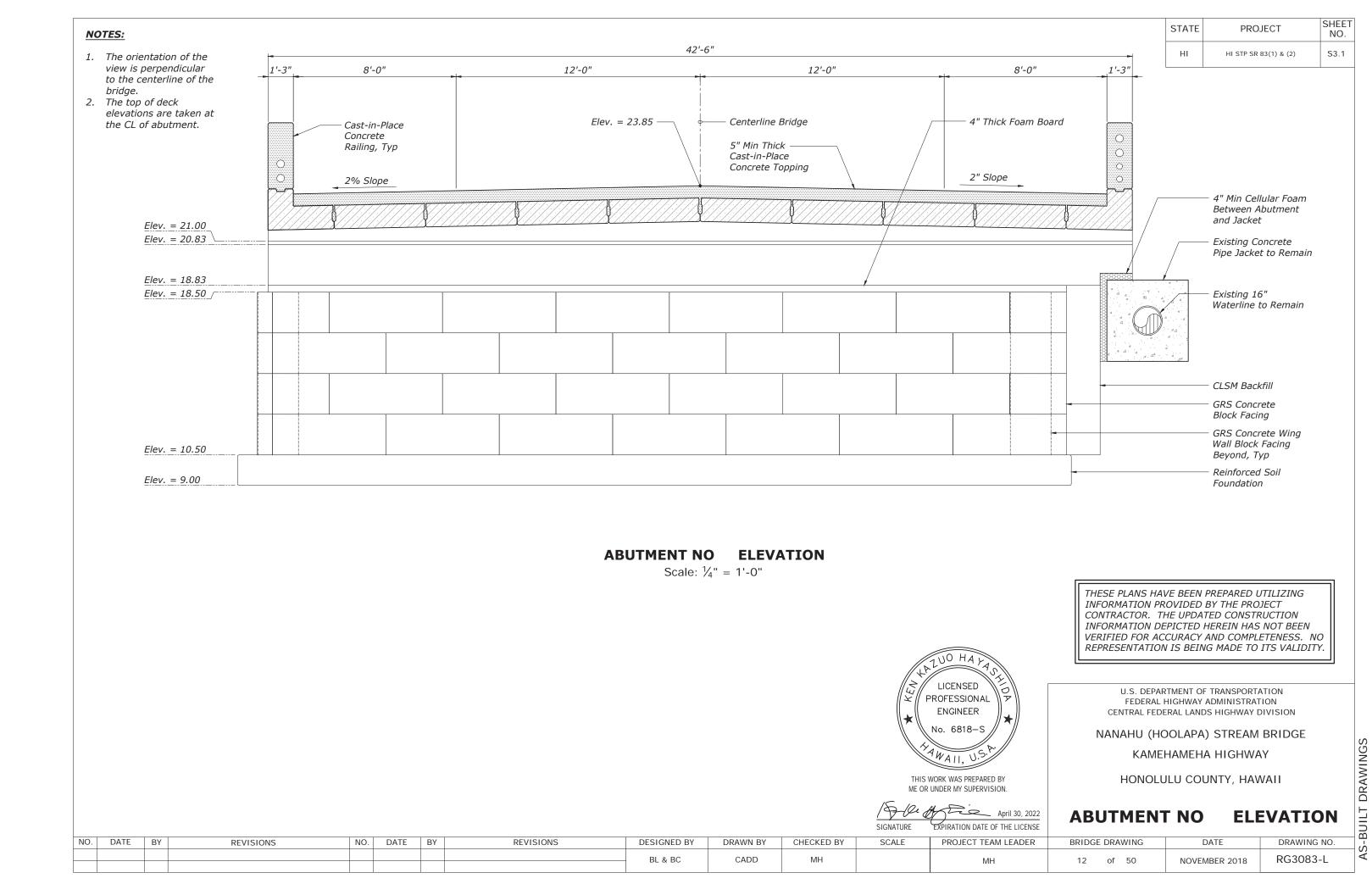
PROJECT

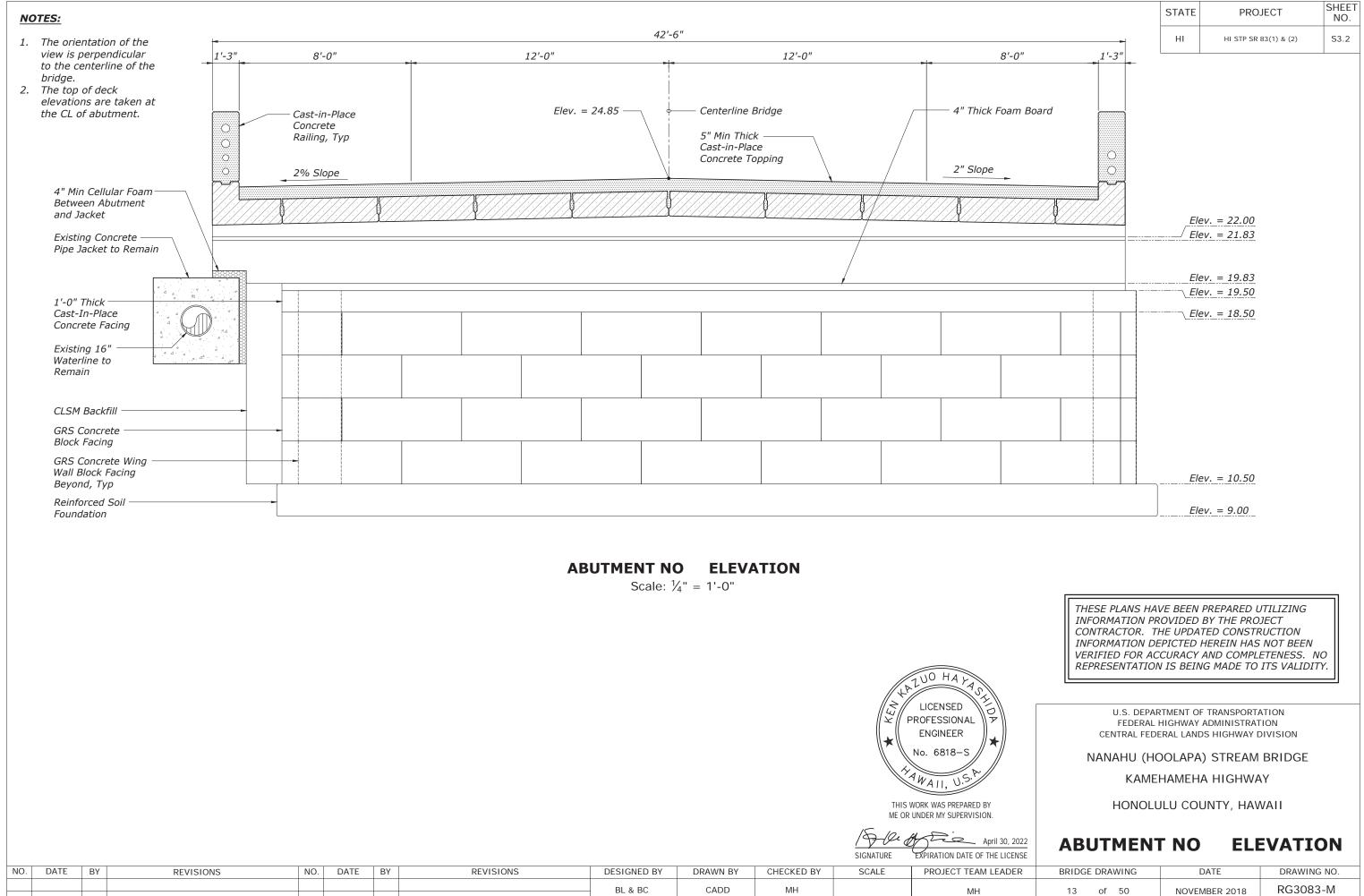
HI STP SR 83(1) & (2)

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

NANAHU (HOOLAPA) STREAM BRIDGE KAMEHAMEHA HIGHWAY

HONOLULU COUNTY, HAWAII


T PICAL CROSS SECTION


Ν	O. DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		MLI	11 of 50	NOVEMBER 2018	RG3083-K
								DE & DO	CADD	10111		IVIT	11 01 50	NOVEWIDER 2016	KOJOOJ K

SHEET

NO.


S2.2

MH

DRAWINGS

Ecoblock, Running

Bond Pattern, Typ

Scarify to a minimum depth of 6", moisture condition to approximately 2% above optimum moisture content and compact to a mimum 95% compaction

GRS Backfill Material in Accordance with Section 704.04(d), Typ

4'-0" Overlap, Typ

Longitudinal Section (Parallel to Baseline)

at 12'

(20) #8 Top, Equally Spaced and

(20) #7 Bottom, Equally Spaced (6) #5x Shear Ties at 12" -#5 Closed Stirrups and Cross

Ties at 6", Top and Bottom

Geotextile Reinforcement,

Type 4, Typ

Added Geotextile

Reinforcement Layer Between Concrete Blocks, Typ

#8 at 4", Each Side

- 1. Geotextile shall be biaxial, woven polypropylene, with a minimum ultimate tensile strength of 4,800 pounds per square foot, see FP-14 Section 714.04(c).
- Geotextile fabric wrapped lifts may be be placed directly atop each other.

Beam Seat and Bearing Bed

with Section 704.04(d), Typ

in 8" Max Lifts, See Note 1

1:1 Slope Measured Perpendicular to Abutment

GRS Backfill Material in Accordance

Abutment Geosythetic Reinforcement

- Prepare and compact foundation soils to conform to FP-14 Section 204.
- Compact backfill to a minimum of 95 percent of the maximum dry density according to AASHTO T99 and ±2 percent of optimum moisture content. In the bearing reinforcement zone, compact to 100 percent of the maximum dry density according to AASHTO T99. Only hand-operated compaction equipment is allowed within 3 feet of the wall face. Reinforcement extends directly beneath each layer of CMU blocks, extending to 1 inch or less from the front face of the wall.
- Temporary shoring shall be used as needed to maintain the integrity and stability of the existing abutment walls until the bridge concrete deck topping has been placed.
- Slush grout shall be non-shrink grout shall be a premixed non-metallic formula, capable of developing a minimum compressive strength of 5,000 psi in 28 days, and will not require corrosion inhibitor.

ABUTMENT NO DETAIL

Scale: $\frac{3}{8}$ " = 1'-0"

CLSM Backfill

NO HA

LICENSED

PROFESSIONAL

ENGINEER

No. 6818-S

THIS WORK WAS PREPARED BY

ME OR UNDER MY SUPERVISION.

AWAII, U

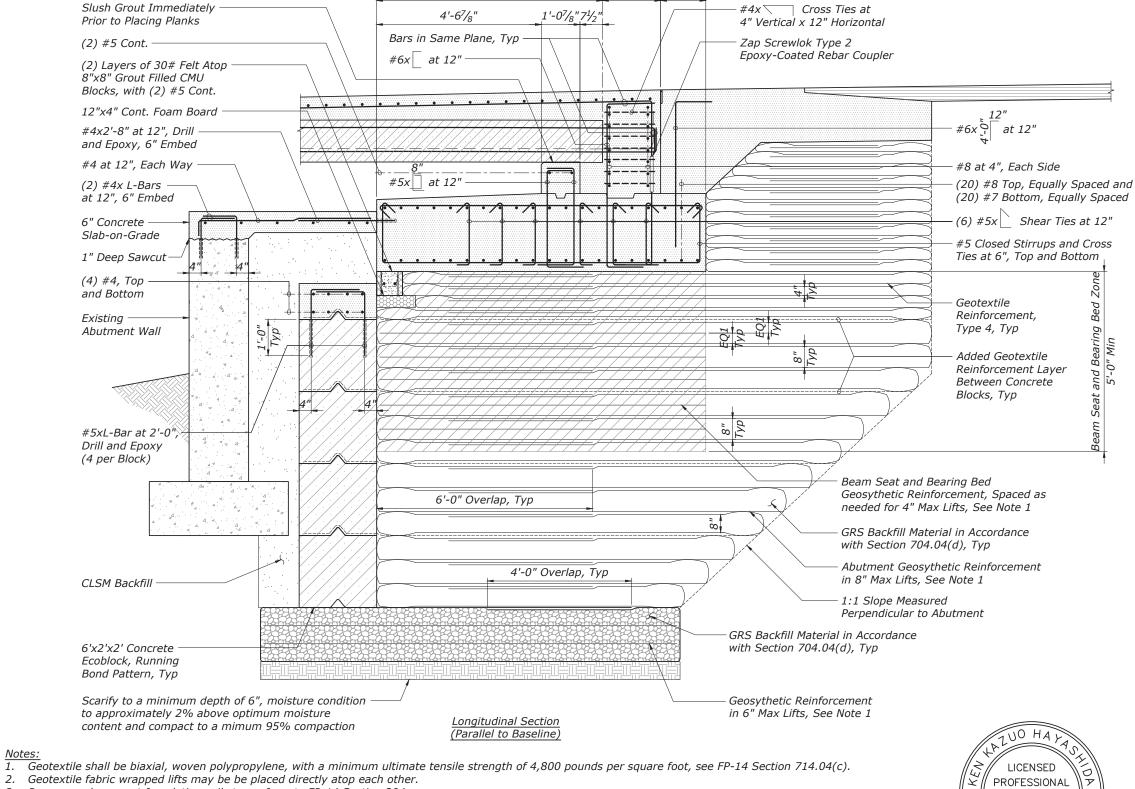
Geosythetic Reinforcement

in 6" Max Lifts, See Note 1

Existing

Abutment Wall

THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.


U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

NANAHU (HOOLAPA) STREAM BRIDGE KAMEHAMEHA HIGHWAY HONOLULU COUNTY, HAWAII

ABUTMENT NO DETAIL

NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		MH	14 of 50	NOVEMBER 2018	RG3083-N
								DE & DC	CADD	10111		IVID	14 01 50	NOVEWBER 2016	ROSCOS IV

1'-3"

- Prepare and compact foundation soils to conform to FP-14 Section 204.
- Compact backfill to a minimum of 95 percent of the maximum dry density according to AASHTO T99 and ±2 percent of optimum moisture content. In the bearing reinforcement zone, compact to 100 percent of the maximum dry density according to AASHTO T99. Only hand-operated compaction equipment is allowed within 3 feet of the wall face. Reinforcement extends directly beneath each layer of CMU blocks, extending to 1 inch or less from the front face of the wall.
- Temporary shoring shall be used as needed to maintain the integrity and stability of the existing abutment walls until the bridge concrete deck topping has been placed.

6'-31/4"

Slush grout shall be non-shrink grout shall be a premixed non-metallic formula, capable of developing a minimum compressive strength of 5,000 psi in 28 days, and will not require corrosion inhibitor.

ABUTMENT NO DETAIL

Scale: $\frac{3}{8}$ " = 1'-0"

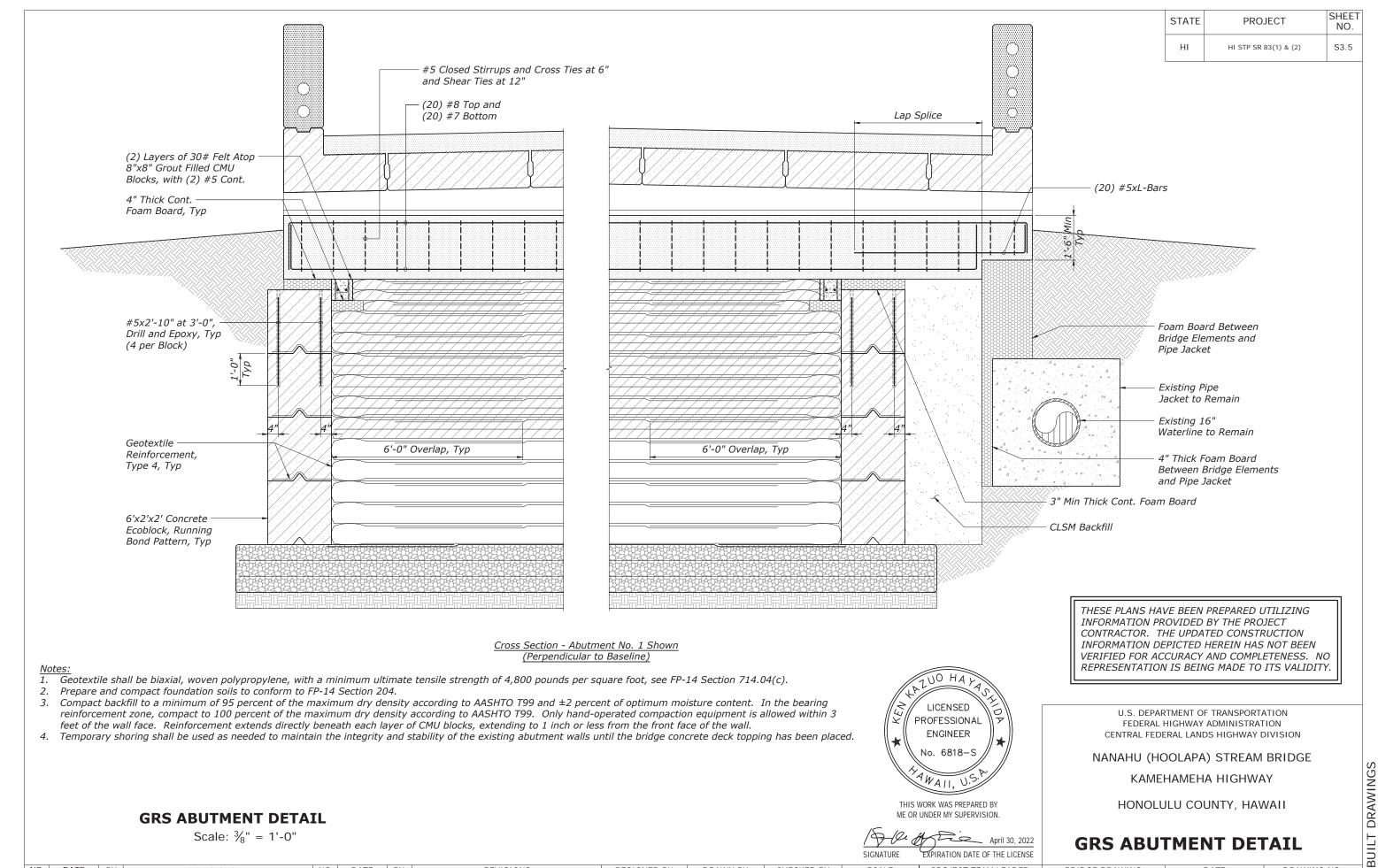
ENGINEER

No. 6818-S

THIS WORK WAS PREPARED BY

ME OR UNDER MY SUPERVISION.

AWAII, U


THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

NANAHU (HOOLAPA) STREAM BRIDGE KAMEHAMEHA HIGHWAY HONOLULU COUNTY, HAWAII

ABUTMENT NO DETAIL

NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		МН	15 of 50	NOVEMBER 2018	RG3083-O

GRS ABUTMENT DETAIL

Scale: $\frac{3}{8}$ " = 1'-0" DATE DATE REVISIONS DESIGNED BY DRAWN BY CHECKED BY PROJECT TEAM LEADER BY REVISIONS NO. BY SCALE

April 30, 2022

GRS ABUTMENT DETAIL

BRIDGE DRAWING DRAWING NO. DATE RG3083-P BL & BC CADD 16 of 50 NOVEMBER 2018 МН

6'x2'x2' Concrete Block, Typ
(3) #6 Vert. Cont.
(2) #4x L-Bars at 1'-6", Drill and Epoxy, 6" Embed (2 per Block)
Space filled with ————————————————————————————————————

CONCRETE BLOC CORNER DETAIL

Scale: $\frac{3}{8}$ " = 1'-0"

THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

NANAHU (HOOLAPA) STREAM BRIDGE KAMEHAMEHA HIGHWAY

HONOLULU COUNTY, HAWAII

T PICAL GRS ABUTMENT DETAILS

NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		MLI	17 of 50	NOVEMBED 2019	RG3083-Q
								DE & DC	CADD	17111		IVIH	17 01 50	NOVEMBER 2018	1.00000-0

Prestressed Plank Notes:

- 1. Prestressed concrete 28 day strength f'c = 8,000 psi. prestressed concrete strength at time of release fci = 6,400 psi.
- 2. Prestressing strands shall be (7) wire 0.6"Ø low relaxation steel strands (Area = 0.217 in²) conforming to ASTM A416 with an ultimate tensile strength of 270 ksi. Initial strand stress (immediately prior to release of prestress) = 0.75 f_{pu} = 202.5 ksi.
- 3. Non-prestressed reinforcing steel shall be deformed bars conforming to ASTM A615 or A706, Grade 60, unless noted otherwise.
- 4. Strand pattern shall be symmetrical about the longitudinal centerline of the plank.
- Strand release sequence shall not induce any lateral deflection of the plank.
- 6. Contractor shall submit shop drawings indicating proposed strand pattern, releasing sequence, reinforcing details and hold down device details to the engineer prior to fabrication.
- 7. During curing, care shall be taken to avoid any lateral deflection to the plank due to improper orientation. steam curing may be used to accelerate strength gain.
- 8. Lifting devices shall be placed as close as possible to the centerline of bearings of the plank. details and locations of lifting devices shall be submitted to the engineer for approval. such approval does not relieve the contractor of his responsibilities if plank is damaged due to failure of the lifting device.
- 9. $P_{(a)} = \text{effective prestress force after all losses (kips)}$
- 10. Plank stirrups shall be placed parallel to the bridge skew.
- 11. Top row of unmasked strands shall be cut flush with the face of plank.
- 12. Where vertical #5 bars in curb section at the Abutment 1 end of plank NE-1 have been inadvertently omitted, drill and epoxy #5 bars at 6". The bars on interior side shall have a minimum embedment of $12\frac{1}{2}$ " and the bars on the exterior side shall have a minimum embedment of 6".
- 13. At Abutment 1 end of Plank NE-1 and Abutment 2 end of Plank NE-2, trim edge bars as needed to maintain clearance from construction joint

Required Actions:

3³/₈" (N-1 thru N-8)

concrete

 $1\frac{7}{8}$ " (NE-1 and NÉ-2)

Estimated plank camber

before placement of deck

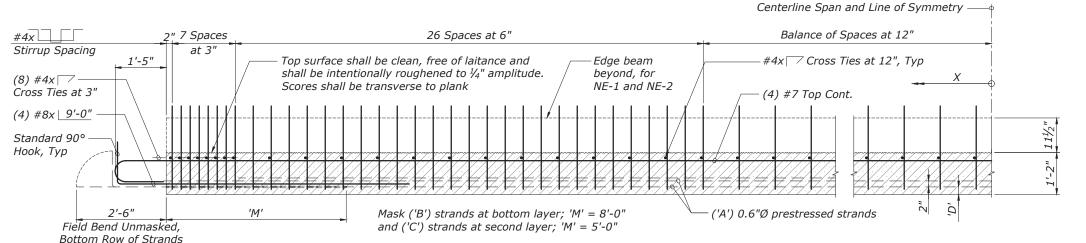
Precast slab position before

placement of deck concrete

- 1. Measure slab camber prior to setting deck forms. If the actual camber exceeds the estimated slab camber (33/8" for interior planks and 17/8" for exterior planks) by more than 1", the fillet will have to be increased by raising profile grade as directed by the owner.
- 2. Set the deck forms and camber the deck machine screed rails to offset the slab deflections $(\frac{1}{2})$ due to deck placement.
- 3. Bridge precast slab seat elevations were calculated using dead load deflections of the deck so that top of precast slab will be a minimum of 1" below bottom of deck at any point in the span, allowing for precast slab depth and slab camber tolerance.

CL Bearing

CL Span

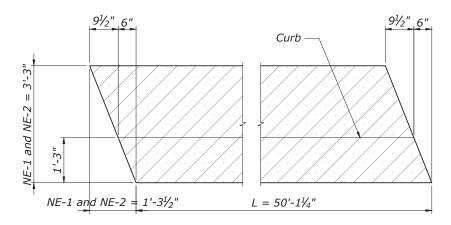

DEC FORM SETTING DIAGRAM

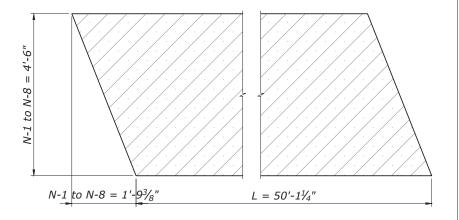
Not to Scale

Notes:

- 1. The plank lengths shown do not include changes in length increase due to elastic and time dependent shortening effects and longitudinal slope of the plank.
- 2. The unmasked strands shall have 2'-6" extension at both ends of each plank.

STATE	PROJECT	SHEET NO.	
НІ	HI STP SR 83(1) & (2)	S4.1	




T PICAL PRESTRESSED PLAN ELEVATION

Scale: $\frac{3}{8}$ " = 1'-0"

	Plank N-	Plank NE-
'A'	34	24
'B'	6	3
'C'	2	2
P _(e) [kips]	1,198	864
C.G.S. [in]	3.32	4.42
'D' [in]	2.5	2.5

Reinforcing not shown for clarity.

Deflection Equation:

 $\Delta = \frac{1}{2}$ " - $X^2(1040.8^{-1})$

Where:

CL Bearing

 $\frac{1}{2}$ " Deflection (Δ)

due to placement

of deck concrete

Final position

of precast slab

 Δ = Deflection, in inches, of slab at any point caused by the weight of deck X = Distance, in feet, measured from midspan (See diagram)

Note:

 Δ max = $\frac{1}{2}$ " at X = 0' (Midspan) Δ min = 0" at X = 22'-9 $\frac{3}{4}$ " (CL Bearing)

THESE PLANS HAVE BEEN PREPARED UTILIZING
INFORMATION PROVIDED BY THE PROJECT
CONTRACTOR. THE UPDATED CONSTRUCTION
INFORMATION DEPICTED HEREIN HAS NOT BEEN
VERIFIED FOR ACCURACY AND COMPLETENESS. NO
REPRESENTATION IS BEING MADE TO ITS VALIDITY.

T PICAL PRESTRESSED PLAN PLAN

Scale: $\frac{3}{8}$ " = 1'-0"

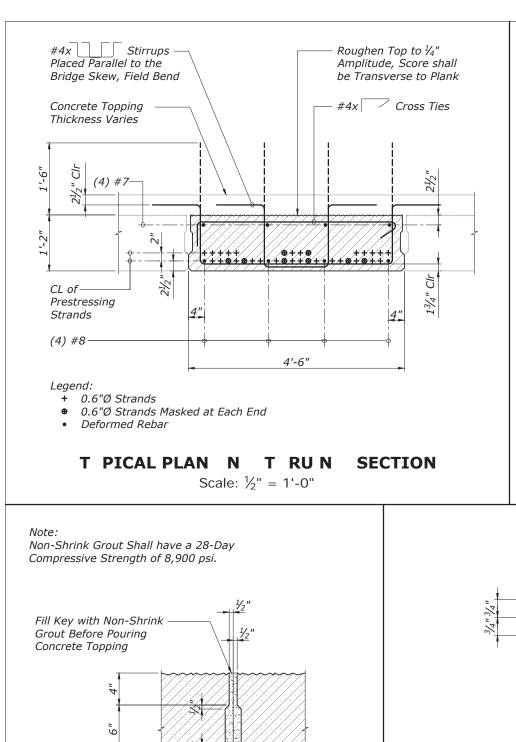
LICENSED
PROFESSIONAL
ENGINEER
No. 6818-S

THIS WORK WAS PREPARED BY

FEDERAL HIGHWAY ADMINISTRATION
CENTRAL FEDERAL LANDS HIGHWAY DIVISION

U.S. DEPARTMENT OF TRANSPORTATION

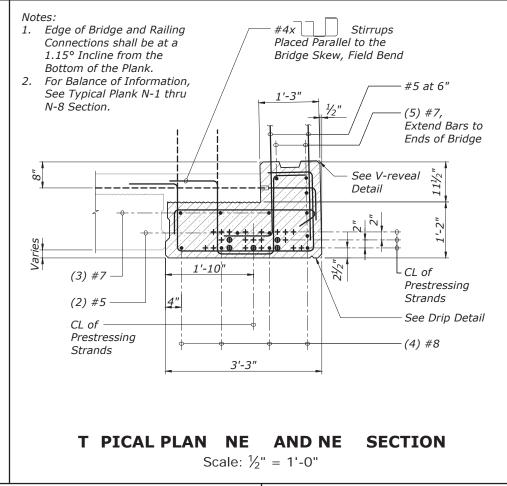
NANAHU (HOOLAPA) STREAM BRIDGE KAMEHAMEHA HIGHWAY


HONOLULU COUNTY, HAWAII

April 30, 2022
SIGNATURE EXPIRATION DATE OF THE LICENSE

ME OR UNDER MY SUPERVISION.

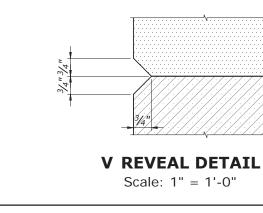
PRESTRESSED PLAN

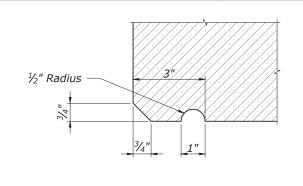

NO. DA	ATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		NALI	19 of 50	NOVEMBER 2018	RG3083-R
								DL & DC	CADD	10111		IVIII	18 01 50	NOVEWIDER 2016	KG5005 K

3/4" Chamfer

E DETAIL

Scale: 1" = 1'-0"




STATE

HI

PROJECT

HI STP SR 83(1) & (2)

DRIP DETAILScale: 1" = 1'-0"

T
T/3 T/3 T/3
Slope 1/4:1, Typ

CURB E DETAIL

Scale: $\frac{1}{2}$ " = 1'-0"

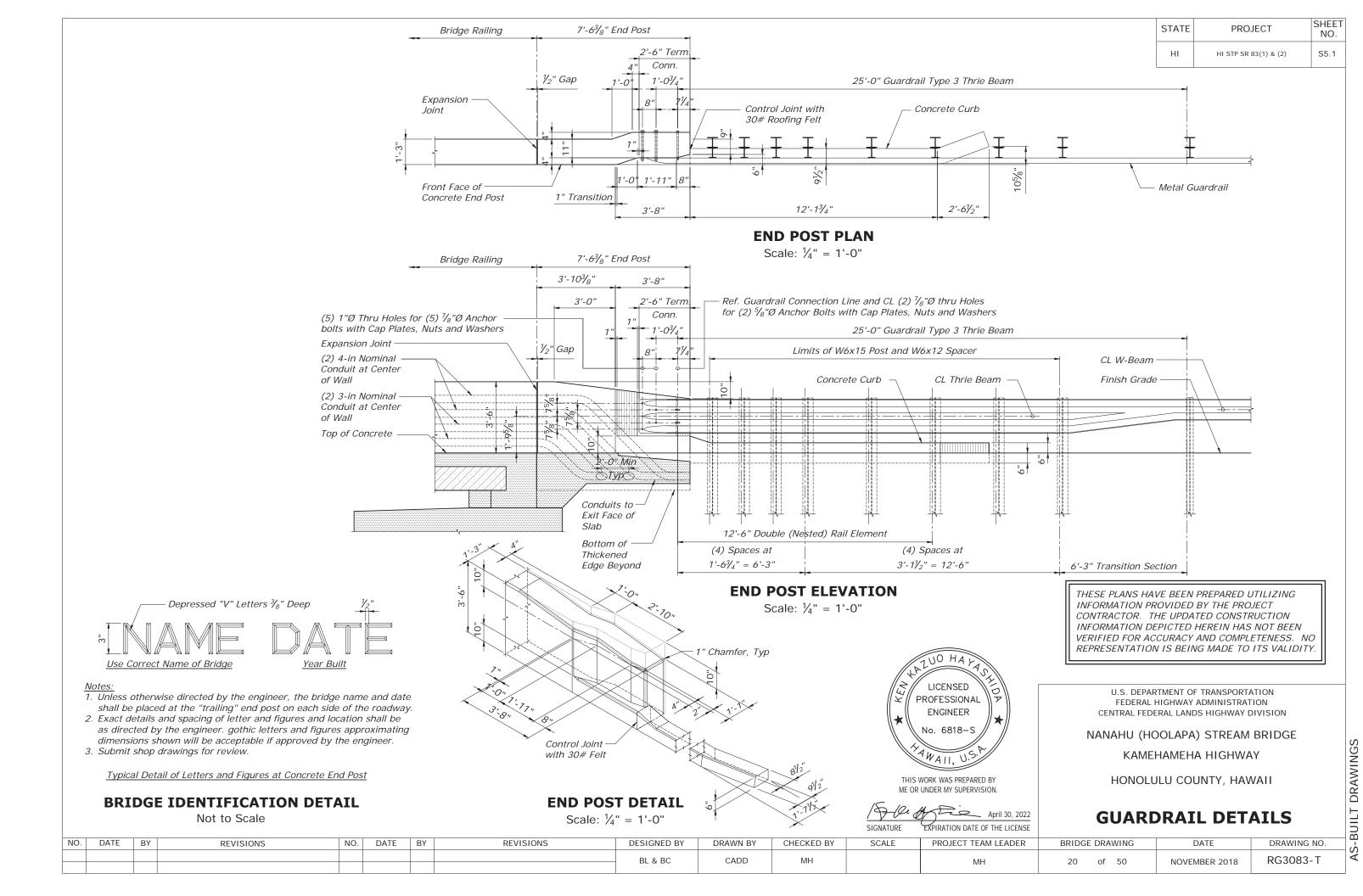
THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

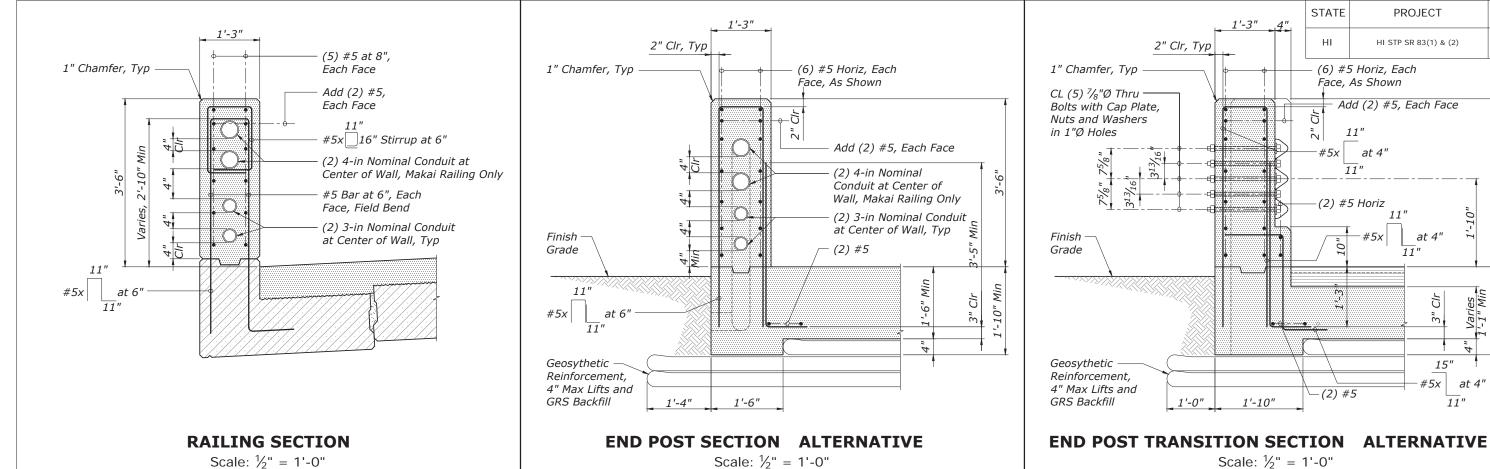
THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.

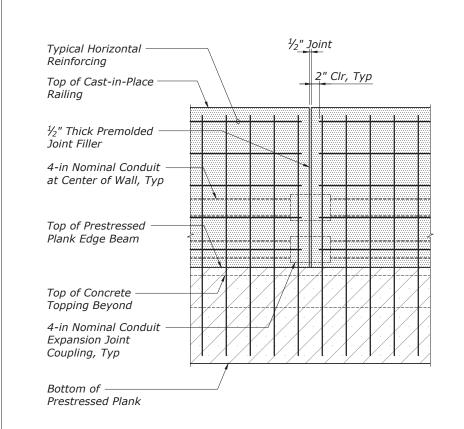
U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

NANAHU (HOOLAPA) STREAM BRIDGE KAMEHAMEHA HIGHWAY

HONOLULU COUNTY, HAWAII

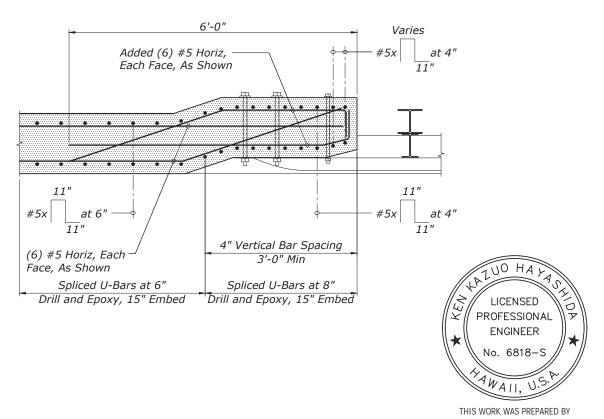

PLAN SECTIONS


NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		МН	19 of 50	NOVEMBER 2018	RG3083-S

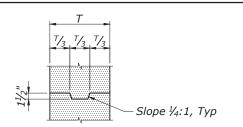

SHEET

NO.

S4.2



RAILING E PANSION OINT DETAIL


Scale: $\frac{1}{2}$ " = 1'-0"

END POST TRANSITION PLAN SECTION

Scale: $\frac{1}{2}$ " = 1'-0"

S EAR E DETAIL

Scale: $\frac{1}{2}$ " = 1'-0"

THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

NANAHU (HOOLAPA) STREAM BRIDGE KAMEHAMEHA HIGHWAY

HONOLULU COUNTY, HAWAII

RAILING SECTION

NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	МН	MH	21 of 50	NOVEMBER 2018	RG3083-U	
									CADD		IVIII				

SHEET

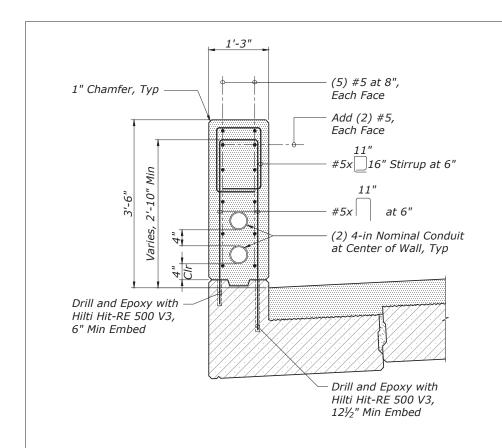
NO.

S5.2

PROJECT

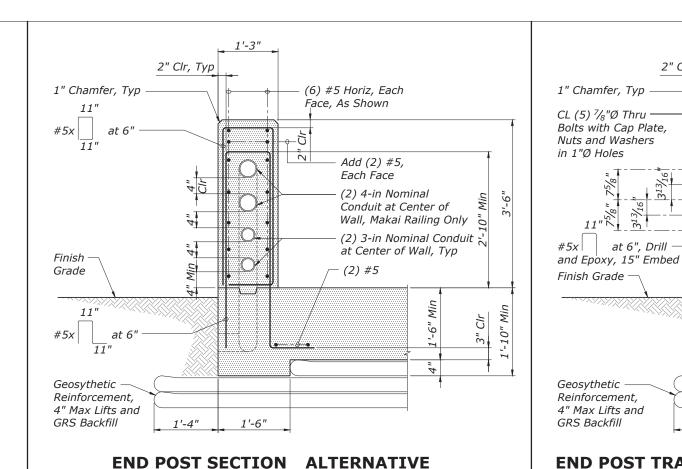
HI STP SR 83(1) & (2)

at 4"


15"

#5x

Varies 1'-1" Min


at 4"

11"

RAILING SECTION AT END OF PLAN NE

Scale: $\frac{1}{2}$ " = 1'-0"

Scale: $\frac{1}{2}$ " = 1'-0"

Scale: $\frac{1}{2}$ " = 1'-0"

(2) #5

STATE

HI

(6) #5 Horiz, Each

Face, As Shown

2" Clr, Typ

1'-0"

at 6", Drill

PROJECT

HI STP SR 83(1) & (2)

at 4"

15"

#5x

Varies 1'-1" Min

at 4"

11"

Add (2) #5, Each Face

110 HA LICENSED **PROFESSIONAL ENGINEER** No. 6818-S AWAII, U

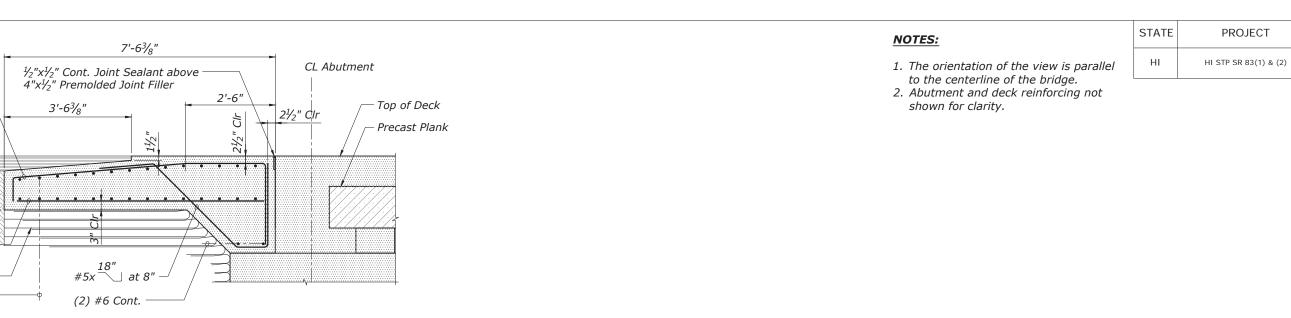
> THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.

THESE PLANS HAVE BEEN PREPARED UTILIZING

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

NANAHU (HOOLAPA) STREAM BRIDGE KAMEHAMEHA HIGHWAY HONOLULU COUNTY, HAWAII


RAILING SECTION

NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	МН		МН	22 of 50	NOVEMBER 2018	RG3083-V

SHEET

NO.

S5.3

T PICAL APPROAC SLAB SECTION

Scale: $\frac{3}{8}$ " = 1'-0"

#5 at 8", Top, Cont. -

#5 at 6", Top and —— Bottom, Placed Parallel

to Abutment Wall

Pavement,

#7 at 8", -Bottom, Cont. GRS Backfill

See Civil Dwgs

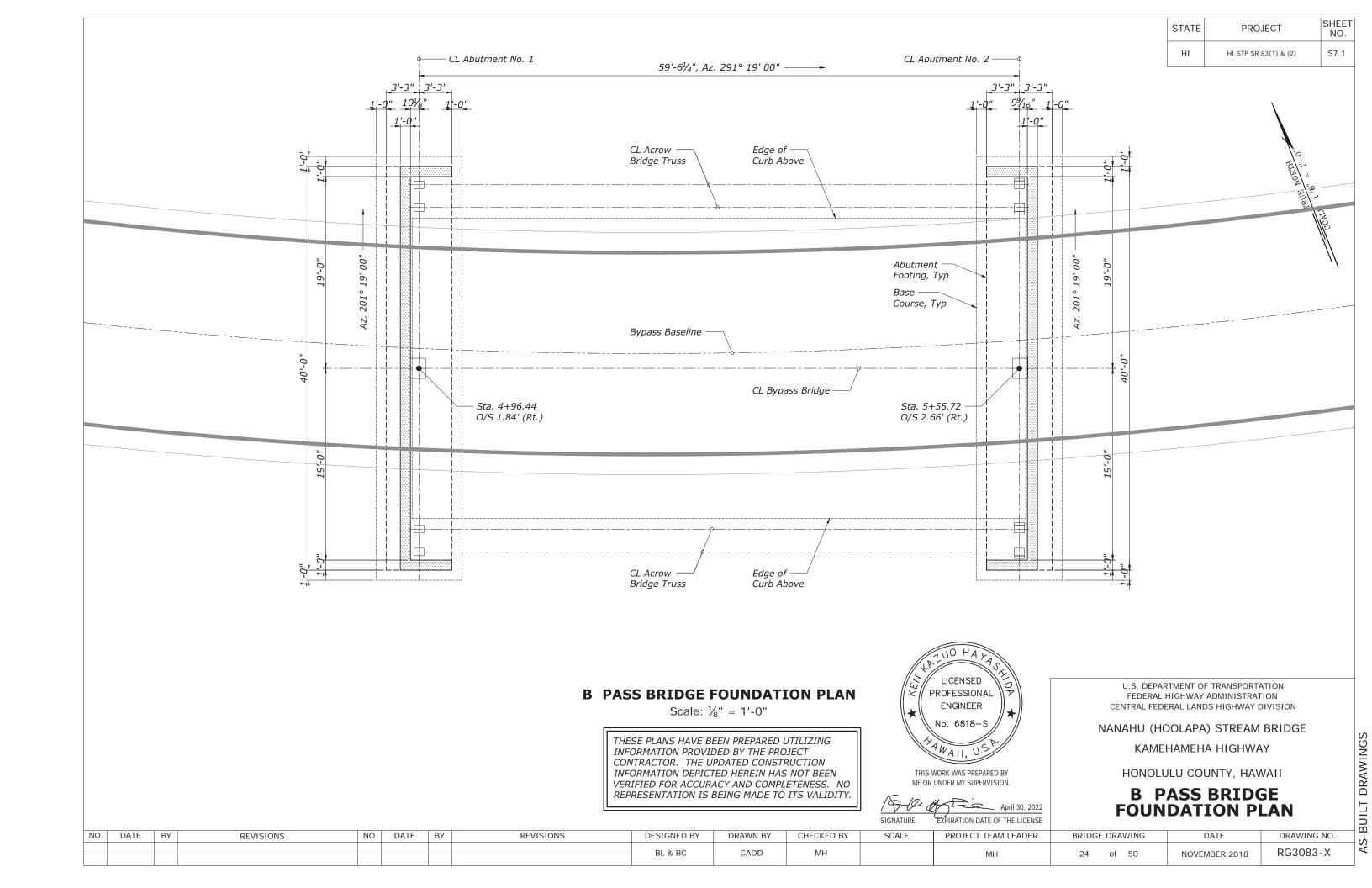
THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

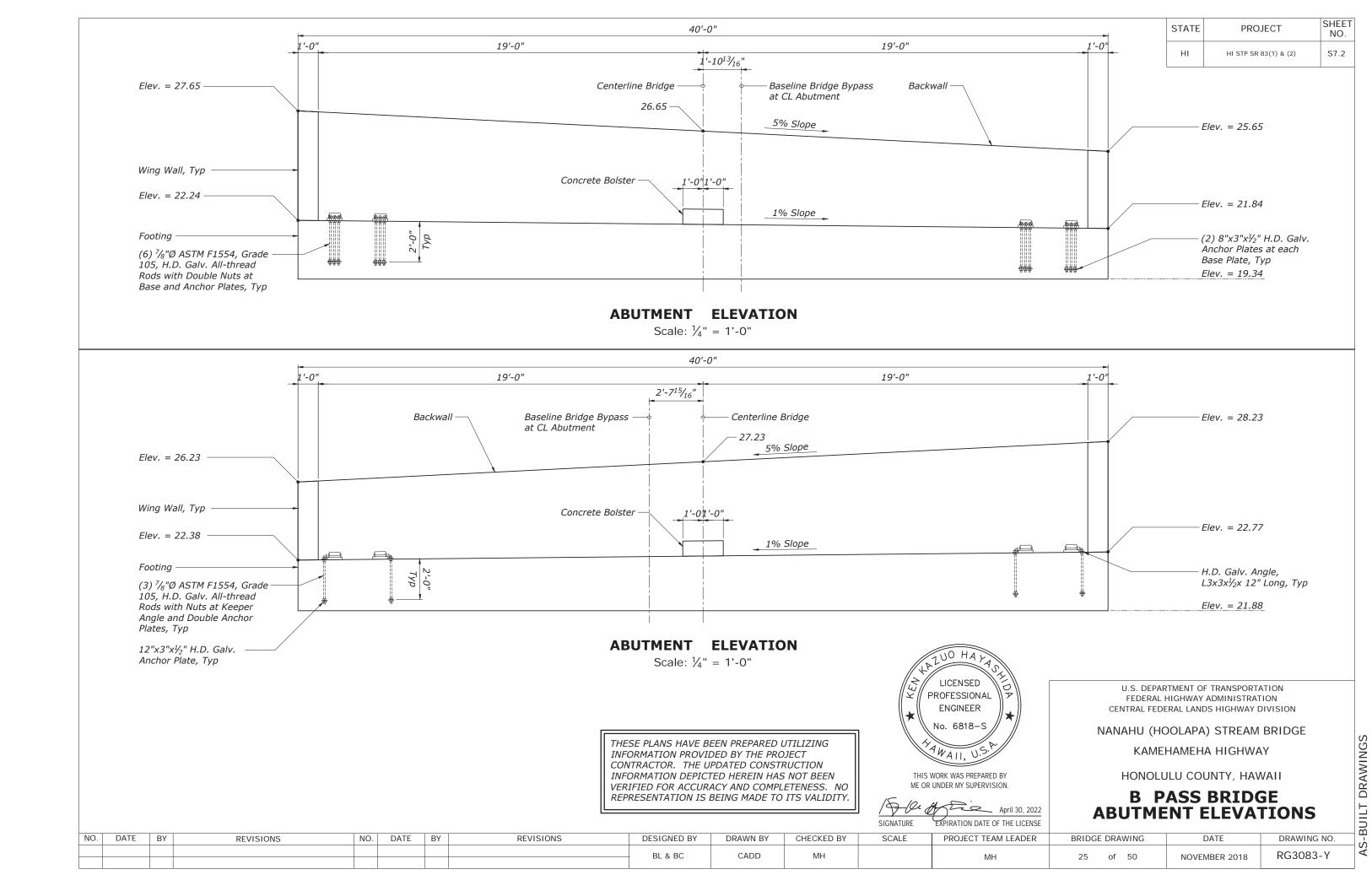
THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.

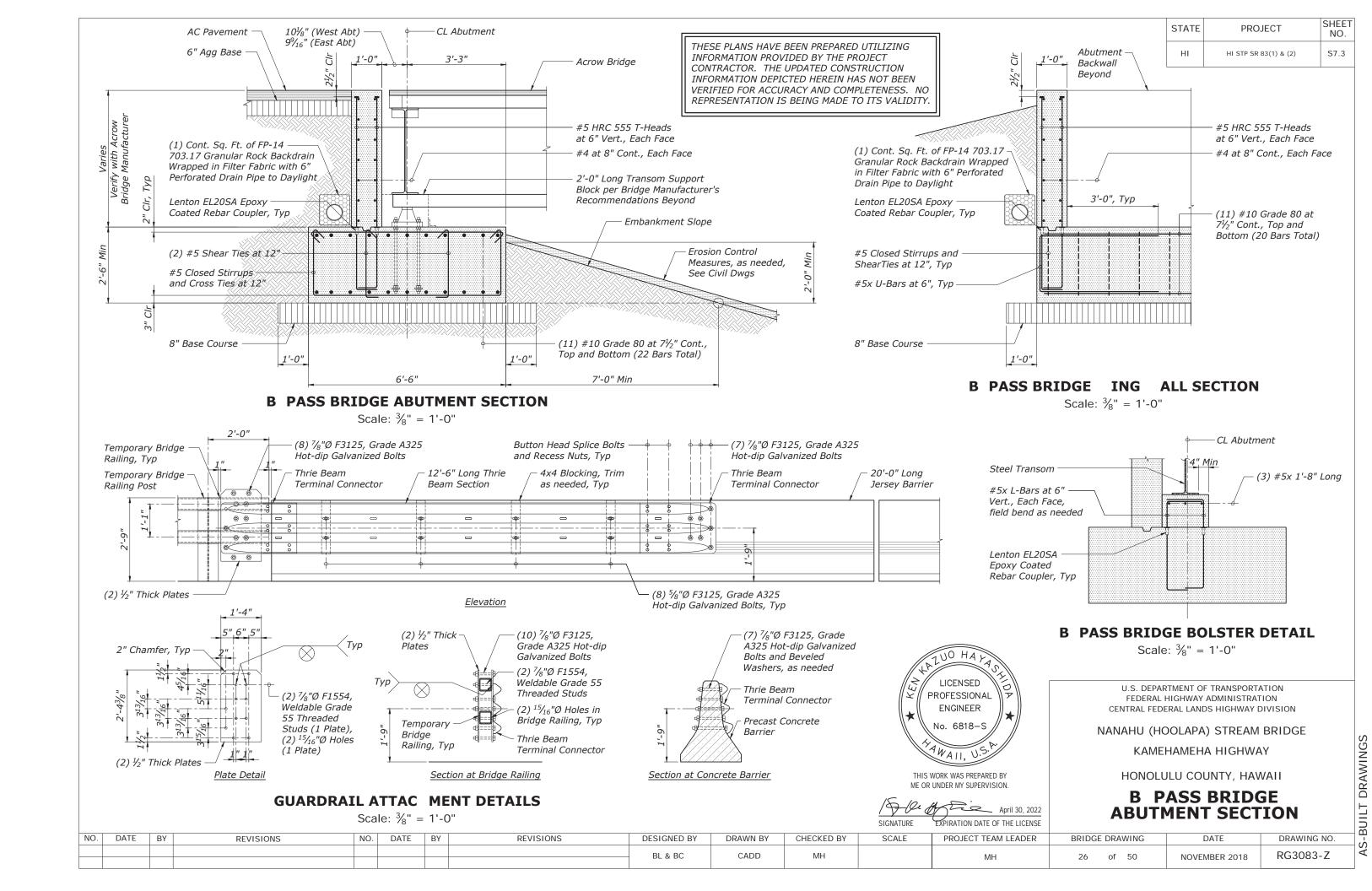
> U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

NANAHU (HOOLAPA) STREAM BRIDGE KAMEHAMEHA HIGHWAY

HONOLULU COUNTY, HAWAII


T PICAL APPROAC SLAB SECTION


IO. DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
							BL & BC	CADD	MH		MLI	22 of 50	NOVEMBER 2018	RG3083-W
							DE & DO	OADD	IVIII		IVIII	23 01 30	NOVEWBER 2016	NG3003 W


SHEET NO.

S6.1

PROJECT

	INDEX TO KAW	ELA BRIDGE DRAWINGS
DRAWING NO.	SHEET	DESCRIPTION
RG3084-A	S8.1	INDEX TO BRIDGE DRAWINGS
RG3084-B	S8.2	STRUCTURAL GENERAL NOTES
RG3084-C	S8.3	QUANTITY SCHEDULE
RG3084-D	S8.4	EXISTING BRIDGE DEMOLITION PLAN
RG3084-E	S8.5	EXISTING BRIDGE ABUTMENT ELEVATIONS
RG3084-F	S9.1	BRIDGE LAYOUT PLAN
RG3084-G	S9.2	BRIDGE FOUNDATION PLAN
RG3084-H	S9.3	BRIDGE DECK FRAMING PLAN
RG3084-I	S10.1	LONGITUDINAL SECTION
RG3084-J	S10.2	TYPICAL CROSS SECTION
RG3084-K	S11.1	ABUTMENT NO. 1 ELEVATION
RG3084-L	S11.2	ABUTMENT NO. 2 ELEVATION
RG3084-M	S11.3	ABUTMENT NO. 1 SECTIONS
RG3084-N	S11.4	ABUTMENT NO. 2 SECTIONS
RG3084-O	S11.5	TYPICAL CONNECTING SLAB
DC 2004 D	S12.1	PRESTRESSED PLANK
RG3084-P		
RG3084-Q	S12.2	PLANK SECTIONS
RG3084-R	S13.1	GUARDRAIL DETAILS
RG3084-S	S13.2	RAILING SECTION
RG3084-T	S14.1	TYPICAL APPROACH SLAB SECTIONS
RG3084-U	S15.1	TYPICAL PRESTRESSED PILE NOTES AND DETAILS
RG3084-V	S16.1	BYPASS BRIDGE FOUNDATION PLAN
RG3084-W	S16.2	BYPASS BRIDGE ABUTMENT ELEVATIONS
RG3084-X	S16.3	BYPASS BRIDGE ABUTMENT SECTION

KAWELA CONSTRUCTION AND CONCRETE PLACEMENT SEQUENCE:

- 1. Pile Cap
- 2. Abutment Wall and 6" Slab-On-Grade
- 3. Bridge Deck
- 4. Approach Slab
- 5. Barrier Railing (Mauka Abutment 2 and Makai Abutment 1) and End Post (Mauka Abutment 1 and Makai Abutment 2)
- 6. Barrier Railing (Mauka Abutment 1 and Makai Abutment 2) and End Post (Mauka Abutment 2 and Makai Abutment 1)

STATE	PROJECT	SHEET NO.	
ні	HI STP SR 83(1) & (2)	S8.1	

THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

April 30, 2022
SIGNATURE EXPIRATION DATE OF THE LICENSE

THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

KAWELA STREAM BRIDGE KAMEHAMEHA HIGHWAY

HONOLULU COUNTY, HAWAII

INDE TO BRIDGE DRA INGS

NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		MH	27 of 50	NOVEMBER 2018	RG3084-A

GENERAL:

- Design standards: AASHTO LRFD Bridge Design Specification, 7th Edition, 2014 as amended by State of Hawaii Department of Transportation Highways Division Design Criteria for Bridges and Structures, August 8, 2014.
- The Contractor shall compare all the contract documents with each other and report in writing to the Engineer all inconsistencies and omissions.
- The contractor shall take field measurements and verify field conditions and shall compare such field measurements and conditions with the drawings. Report in writing to the Engineer all inconsistencies and omissions.
- D. The contractor shall be responsible for coordinating the work of all trades.
- The contractor shall be responsible for means and methods of construction, workmanship and job safety.
- The contractor shall provide temporary shoring and bracing as required for stability of structural members and systems.
- Construction loading shall not exceed design live load unless special shoring is provided. Permitted construction loads shall be properly reduced in areas where the structure has not attained full design strength.
- The contractor shall be responsible for protection of the adjacent properties, structures, streets and utilities during the construction period. Any damaged or deteriorated property shall be restored to the condition prior to the beginning of work or better at no cost to the state.
- Details noted as typical on the structural drawings shall apply in all conditions unless specifically shown or noted otherwise.

DESIGN CRITERIA:

- Live loads
 - 1. Vehicular: HL-93
- 2. Bridge railing: in accordance with AASHTO TL-3
- Lateral loads
 - 1. Seismic
 - a. Spectral response acceleration coefficients
 - Short period, s_s : 0.366g
 - 1-sec period, s_1 : 0.100g
 - b. Site Class: E
- c. Seismic Zone: 3
- C.
 - 1. Strength limit state bearing capacity
 - a. Approach slabs: 4,000 psf
 - b. Bypass bridge abutments: 3,600 psf
 - 2. Earth pressure
 - a. Active (level backfill)
 - Unrestrained: 53 pcf

Restrained: 74 pcf

- b. Passive:
 - Strength limit state: 221 pcf
 - Extreme limit state: 442 pcf
- Future wearing surface (curb to curb): 25 psf
- Future utility line each side of bridge: 150 plf

FOUNDATION:

- Foundation design is based on the Geotechnical Exploration and Evaluation Report, dated August 2019.
- В. Contractor shall provide de-watering of excavated areas, as required.
- Footings shall bear on undisturbed in-situ firm soils bottom of footings shall be compacted to provide a relatively firm and smooth bearing surface prior to placement of reinforcing steel and concrete. If soft and/or loose materials are encountered at the bottom of footing excavations, they shall be over-excavated to expose the underlying firm materials. The over-excavated area shall be backfilled with select granular material compacted to a minimum of 95% relative compaction or the footing bottom may be extended down to the underlying competent material. Contractor may substitute flowable concrete or the granular material upon approval from the Engineer.
- Excavations for footings shall be approved by the Geotechnical Engineer of Record prior to placement of concrete and reinforcing.
- Engineered fill and backfill shall be in accordance with FP-14 Specifcations and associated SCR's.
- Fill should be moisture conditioned to within two percent of the optimum moisture content and placed in horizontal lifts not to exceed six inches. Fill shall be compacted to minimum 95%relative density as measured by AASHTO T180.

CONCRETE:

- Concrete construction shall conform to the FP-14 Specifications and associated SCR's.
- Concrete shall be normal weight hard rock concrete and shall have the following minimum 28 day compressive strength or comply with class of concrete compressive strength listed in the FP-14 Specifications:

1. Pre-stressed piles 6000 psi 2. Pre-stressed planks

8000 psi Abutment footings and pile caps Class A

Slab topping, approach slabs, and railings

Class A Abutment walls and wing walls Class A

6. All other concrete Class A

- Concrete delivery tickets shall record all free water in the mix at batching plant, added for consistency by driver, and any additional request by contractor up to the maximum amount allowed by the mix design.
- All inserts, anchor bolts, plates, and other items to be cast in the concrete shall be hot-dipped galvanized according to ASTM A153 unless otherwise noted.
- Reinforcing bars, anchor bolts, inserts, and other items to be cast in the concrete shall be secured in position prior to placement of concrete.
- Conduits, pipes, and sleeves passing through a slab or footing that do not conform to typical details shall be located and the proposed construction detail submitted to the Engineer for approval.
- Conduits, pipes, and sleeves embedded within a slab or wall (other than those merely passing through) shall be:
 - 1. No larger in outside dimensions than one third the overall slab or wall thickness in which they are
 - Placed in the middle one third of slab or wall thickness
 - Spaced no closer than three diameters or widths on
- Conduits, pipes, and sleeves shall not be placed through or embedded in a beam unless specifically detailed.

- The contractor shall locate construction joints not shown on the drawings, so as not to impair the strength of the structure and to minimize shrinkage stresses. Submit proposed locations of construction joints to the Engineer for approval.
- Non-shrink grout shall be a premixed non-metallic formula, shall be capable of developing a minimum compressive strength of 5,000 psi in 3 days and 8,900 psi in 28 days, and shall contain at least 10 grams of migrating amine carboxylate corrosion inhibitor when grout is in contact with steel appurtenances. Precast plank shear keys will not require corrosion inhibitor.
- Joint filler shall conform to FP-14 section 712.01(b).
- L. A shrinkage reducing admixture conforming to SCR section 711.03(b) shall be included in the concrete mix for all cast-in-place concrete.
- A corrosion inhibiting admixture conforming to SCR section 711.03(a) shall be included in the concrete mix for all concrete.
- Reinforcing fibers conforming to SCR section 725.17(b) shall be included in the concrete mix for members as specified in SCR section 552.03.

THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.

STATE

ΗΙ

PROJECT

HI STP SR 83(1) & (2)

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

> KAWELA STREAM BRIDGE KAMEHAMEHA HIGHWAY

HONOLULU COUNTY, HAWAII

EXPIRATION DATE OF THE LICENSE

THIS WORK WAS PREPARED BY

ME OR UNDER MY SUPERVISION.

NO HA

LICENSED

PROFESSIONAL

ENGINEER

No. 6818-S

9WAII, U

STRUCTURAL GENERAL NOTES

NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		NAL I	28 of 50	NOVEMBER 2018	RG3084-B
								DE & BC	CADD	IVIII		MH	26 01 50	NOVEWBER 2018	KG3004-B

SHEET

NO.

S8.2

REINFORCING STEEL:

- A. Reinforcing steel shall be deformed bars conforming to AASHTO M31, Grade 60, unless otherwise noted.
- B. Low alloy steel deformed bars shall conform to FP-14 section 709.01(i), Grade 60, unless otherwise noted.
- C. Clear concrete cover for reinforcing bars shall be as follows, unless otherwise noted:
 - 1. Footings, slabs, etc. cast against earth: 3"
 - 2. Footings, walls, grade beams, etc. formed and exposed to earth or weather: 2"
 - 3. Bridge deck top reinforcement: 2-1/2"
 - 4. Other: 2"
- D. Reinforcing steel shall be spliced where indicated on plans. Provide lap splice length per typical details and schedule, unless otherwise noted.
- E. Mechanical splice connectors shall develop in tension 125 percent of the specified minimum yield strength of reinforcing bars.
- F. Provide standard hooks conforming to ACI SP-66.
- G. Fabricate reinforcing bars according to ACI SP-66, ACI Detailing Manual.
- H. Reinforcing steel shall be placed and secured in conformance with crsi manual of standard practice with placement tolerances per ACI standard 117.

STRUCTURAL STEEL:

- A. Fabrication and erection of structural steel shall conform to the american institute of steel construction manual of steel construction, thirteenth edition.
- B. Structural steel shall conform to ASTM A36 unless otherwise noted.
- C. Steel wide flange sections shall conform to ASTM A992.
- D. Plates and bars shall conform to ASTM A36.
- E. Welds and welding procedures shall conform to the structural welding code AWS D1.1 of the american welding society.
- F. Welding shall be performed by welders prequalified for welding procedures to be used.
- G. Welding electrodes shall be E70xx for carbon steel.
- H. High-strength bolts shall conform to ASTM A325, type N. Installation shall be assured by any of the following methods:
 - 1. Turn of nut method
 - 2. Direct tension indicator
 - 3. Calibrated wrench
 - 4. Alternative design bolt
- All anchor bolts, plates, and other items to be cast in concrete shall be hot-dip galvanized according to ASTM A153 unless otherwise noted.
- J. Carbon steel bolts shall conform to ASTM A307, grade a unless otherwise noted, and shall be hot-dip galvanized according to ASTM A153.
- K. All steel shall be hot-dip galvanized after fabrication according to ASTM A123.
- L. Any damaged galvanized surface shall be repaired as follows:
 - 1. prepare surface per sspc-sp1, solvent cleaning.
 - 2. apply two coats of cold applied galvanizing compound containing 95% metallic zinc content by weight in dry film and 52% solids content by volume.
 - 3. application rate shall be 1.5 mils dry film thickness per coat.

TATE	PROJECT	SHEET NO.	
ні	HI STP SR 83(1) & (2)	S8.3	

	LOAD	RATING	G	
	Rating Factor	Distribution Factor	Load Effect	Controlling Member
HL-93 Inventory	2.05	0.325	Positive Moment	Interior Girder
HL-93 Operating	2.66	0.325	Positive Moment	Interior Girder

S

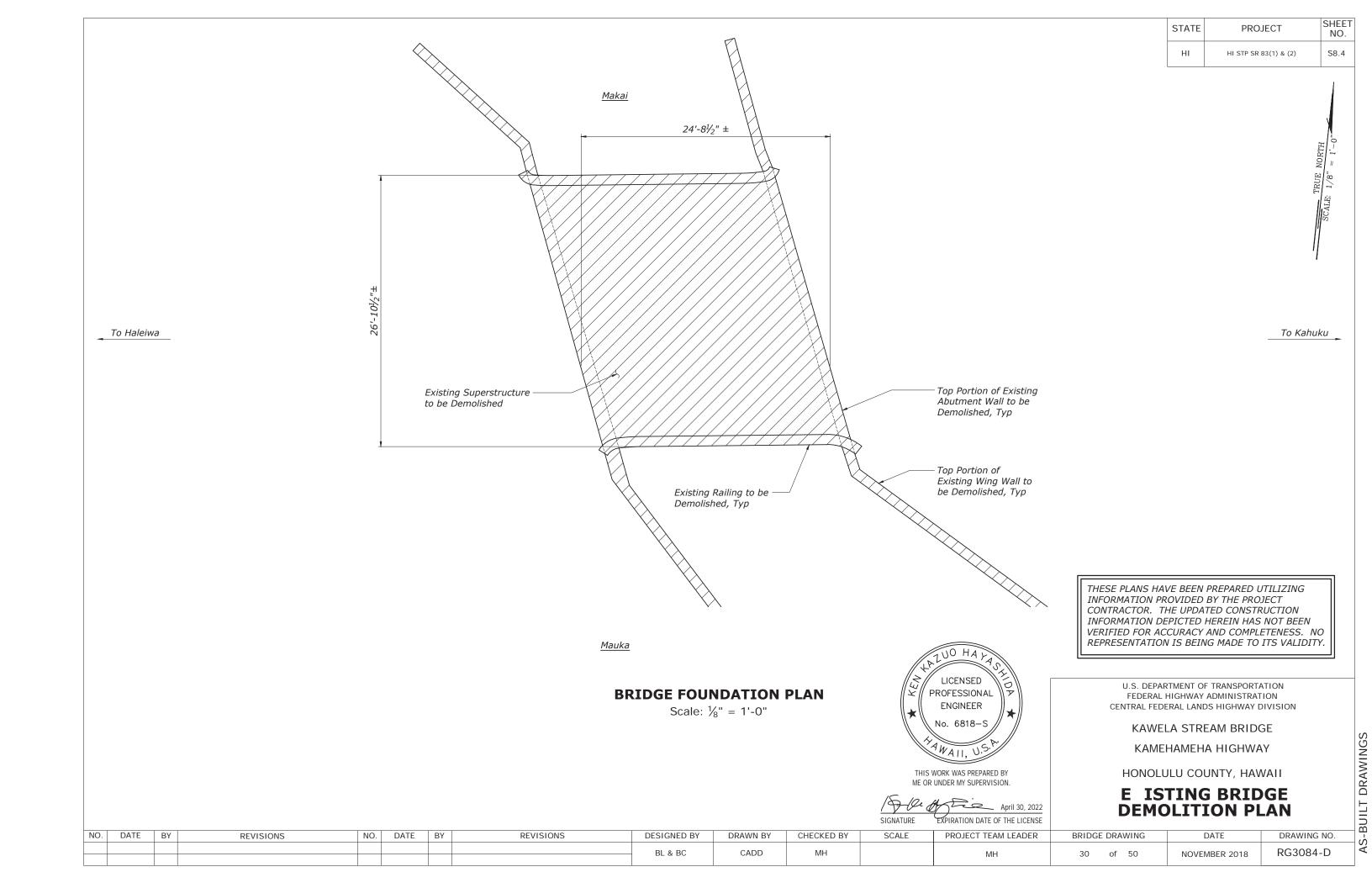
	ESTIMATE												
Item No.	Description	Quantity	Unit	Notes									
20304-1000	Removal of structures and obstructions	LPSM	LPSM	-									
20435-2000	Backfill, Granular (beneath approach slabs)	25	CUYD	(1)									
20801-0000	Structure excavation	214	CUYD	-									
20803-0000	Structure backfill	18	CUYD	-									
55101-0300	Precast prestressed concrete pile	864	LNFT	-									
55201-1500	Structure Concrete	281	CUYD	(2)									
55302-3500	Precast, prestressed concrete slab, 14" solid	460	LNFT	(3)									
55401-1000	Reinforcing steel	94400	LB	-									
55601-0500	Bridge railing, concrete	164	LNFT	-									
61707-0000	Structure Transition Railing	100	LNFT	(4)									

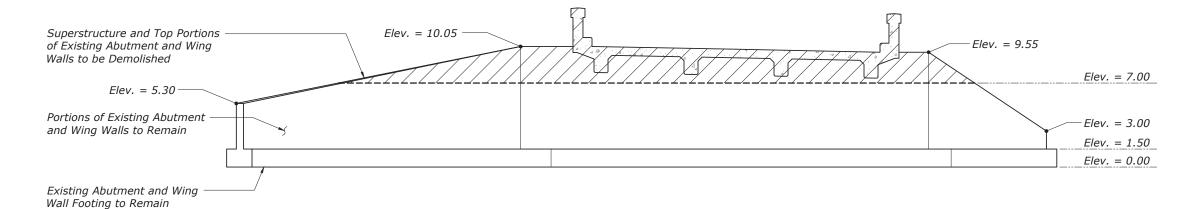
ESTIMATE NOTES:

- (1) Includes cost of drain pipes, geocomposite drains, aggregate base course backfill and aggregate subbase course
- (2) Includes cost of bridge deck, approach slabs
- (3) Includes cost of concrete, reinforcing steel, prestressing steel, inserts, plates, lifting devices, and other materials required for the manufacture and erection of the planks
- (4) Includes cost of furnishing and installing posts, blocks, thrie and W-beam rail elements, anchor plates, and installation hardware

THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

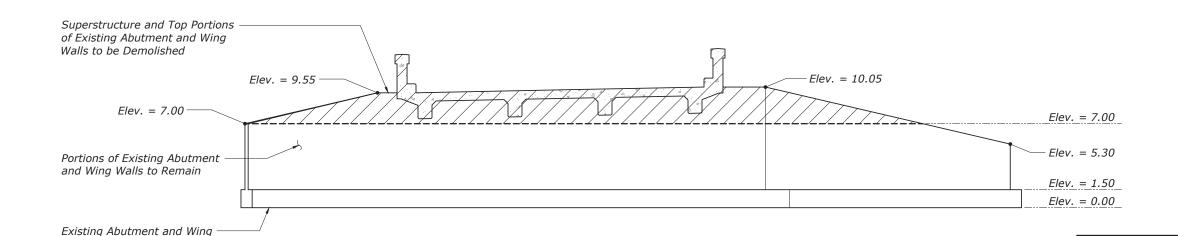
April 30, 2022
SIGNATURE EXPIRATION DATE OF THE LICENSE


THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.


U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

KAWELA STREAM BRIDGE
KAMEHAMEHA HIGHWAY
HONOLULU COUNTY, HAWAII

UANTIT SC EDULE


NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		МН	29 of 50	NOVEMBER 2018	RG3084-C

E ISTING BRIDGE EST ABUTMENT FRONT ELEVATION

Scale: $\frac{1}{8}$ " = 1'-0"

E ISTING BRIDGE EAST ABUTMENT FRONT ELEVATION

Scale: $\frac{1}{8}$ " = 1'-0"

NOTES:

Wall Footing to Remain

 The orientations of the views are perpendicular to the baseline of the highway.
 Temporary shoring shall be used as needed to maintain the integrity and stability of the existing abutment walls until the bridge concrete deck topping has been placed.

THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

EXPIRATION DATE OF THE LICENSE

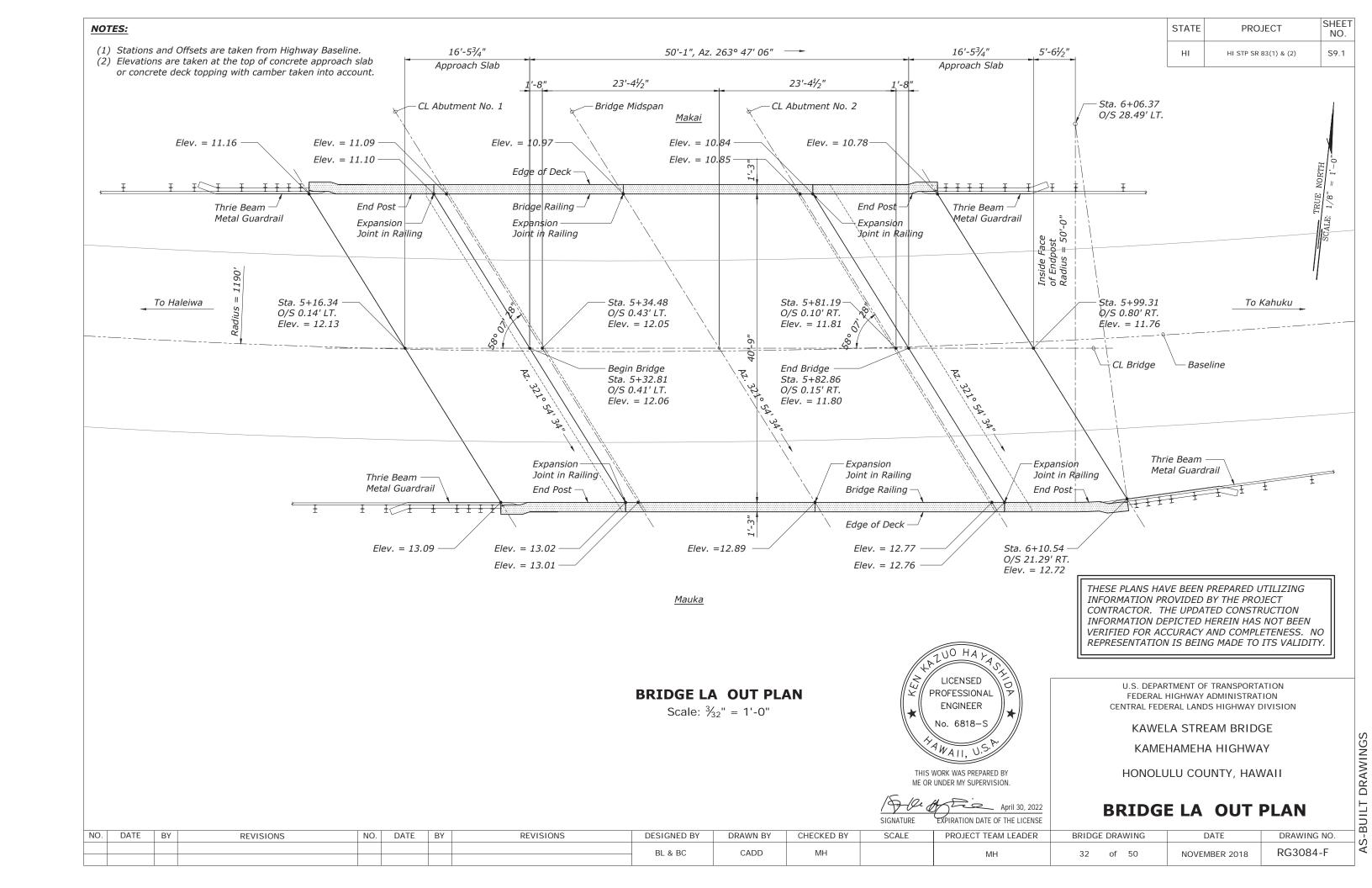
HONOLULU COUNTY, HAWAII
E ISTING BRIDGE
ABUTMENT FLEVATIONS

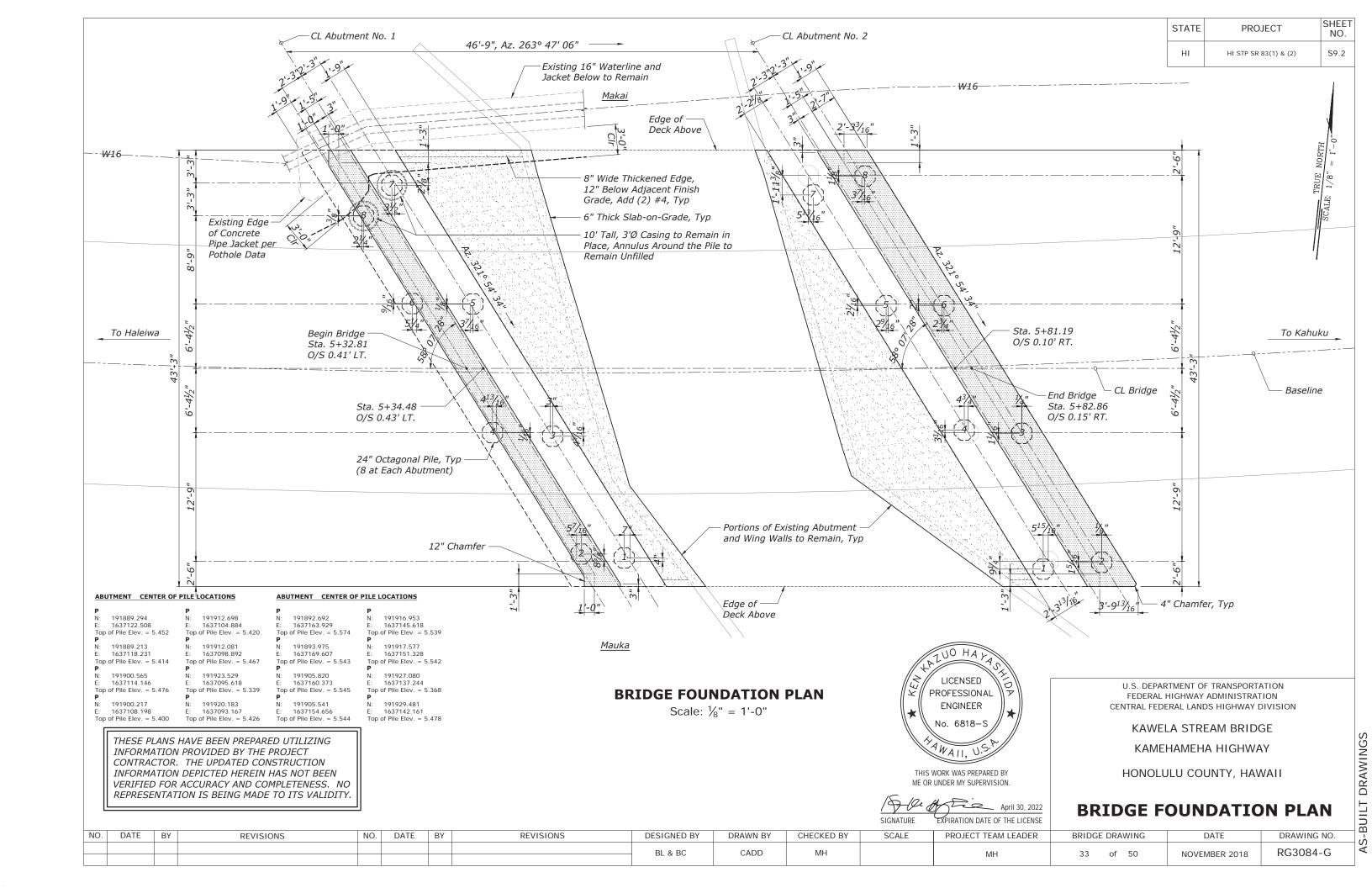
THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION

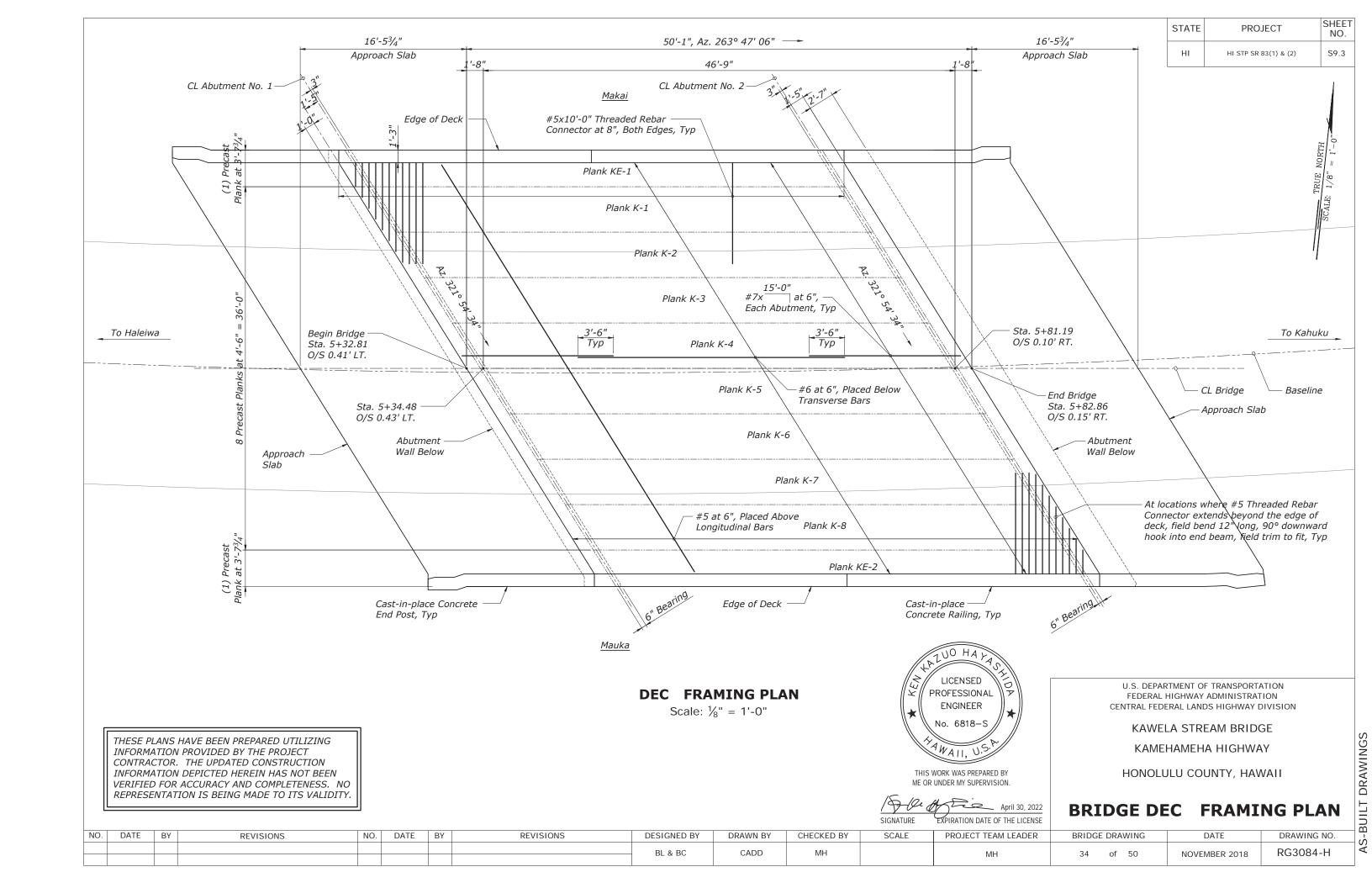
INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO

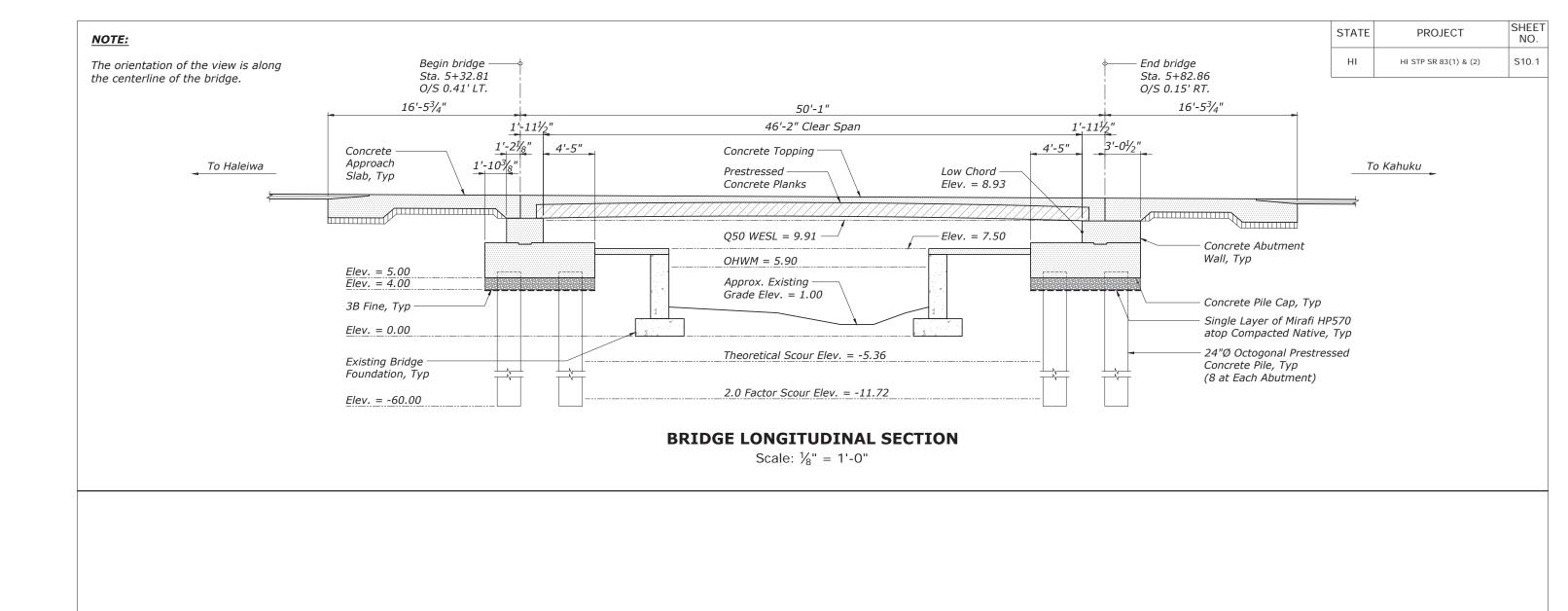
REPRESENTATION IS BEING MADE TO ITS VALIDITY.

U.S. DEPARTMENT OF TRANSPORTATION


FEDERAL HIGHWAY ADMINISTRATION


CENTRAL FEDERAL LANDS HIGHWAY DIVISION


KAWELA STREAM BRIDGE

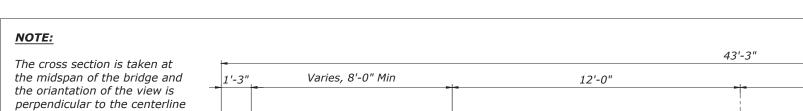

KAMEHAMEHA HIGHWAY

NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		МН	31 of 50	NOVEMBER 2018	RG3084-E

THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

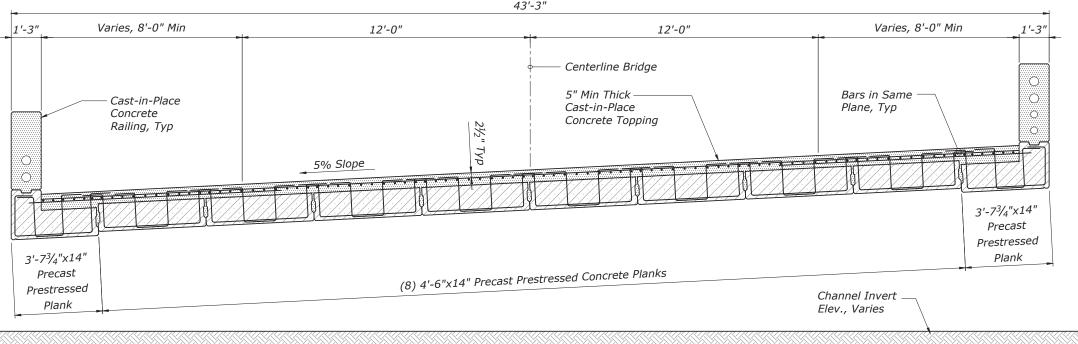
April 30, 2022
SIGNATURE EXPIRATION DATE OF THE LICENSE

THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.


U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

KAWELA STREAM BRIDGE KAMEHAMEHA HIGHWAY

HONOLULU COUNTY, HAWAII


LONGITUDINAL SECTION

NO. DA	ATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		ML	35 of 50	NOVEMBER 2018	RG3084-I
								DE Q D0	O/IDD	14111		IVIII	33 01 30	NOVLINIBLE 2016	11000011

of the bridge.

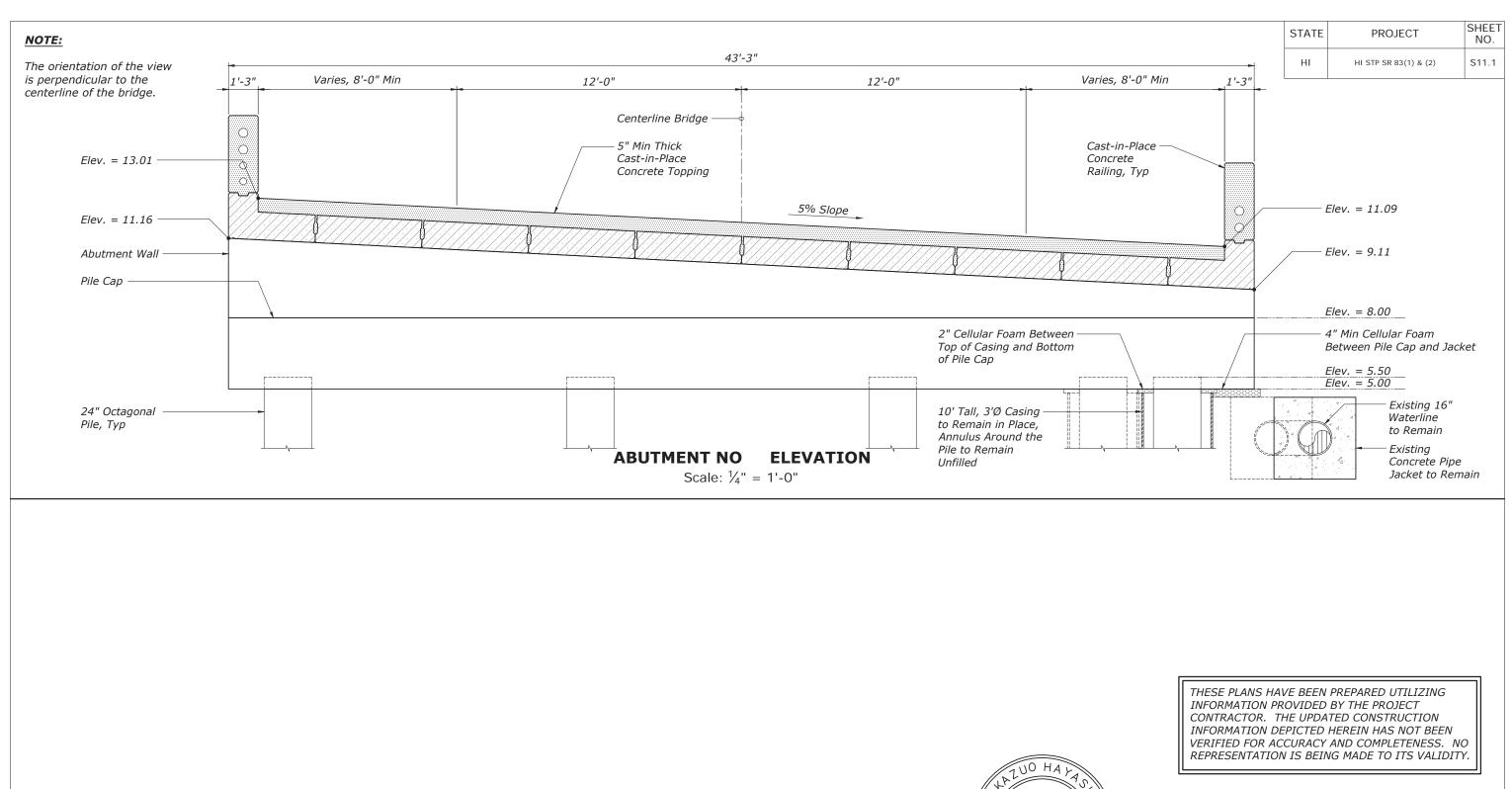
T PICAL BRIDGE CROSS SECTION

Scale: $\frac{1}{4}$ " = 1'-0"

THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

April 30, 2022
SIGNATURE EXPIRATION DATE OF THE LICENSE

THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.


U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

> KAWELA STREAM BRIDGE KAMEHAMEHA HIGHWAY

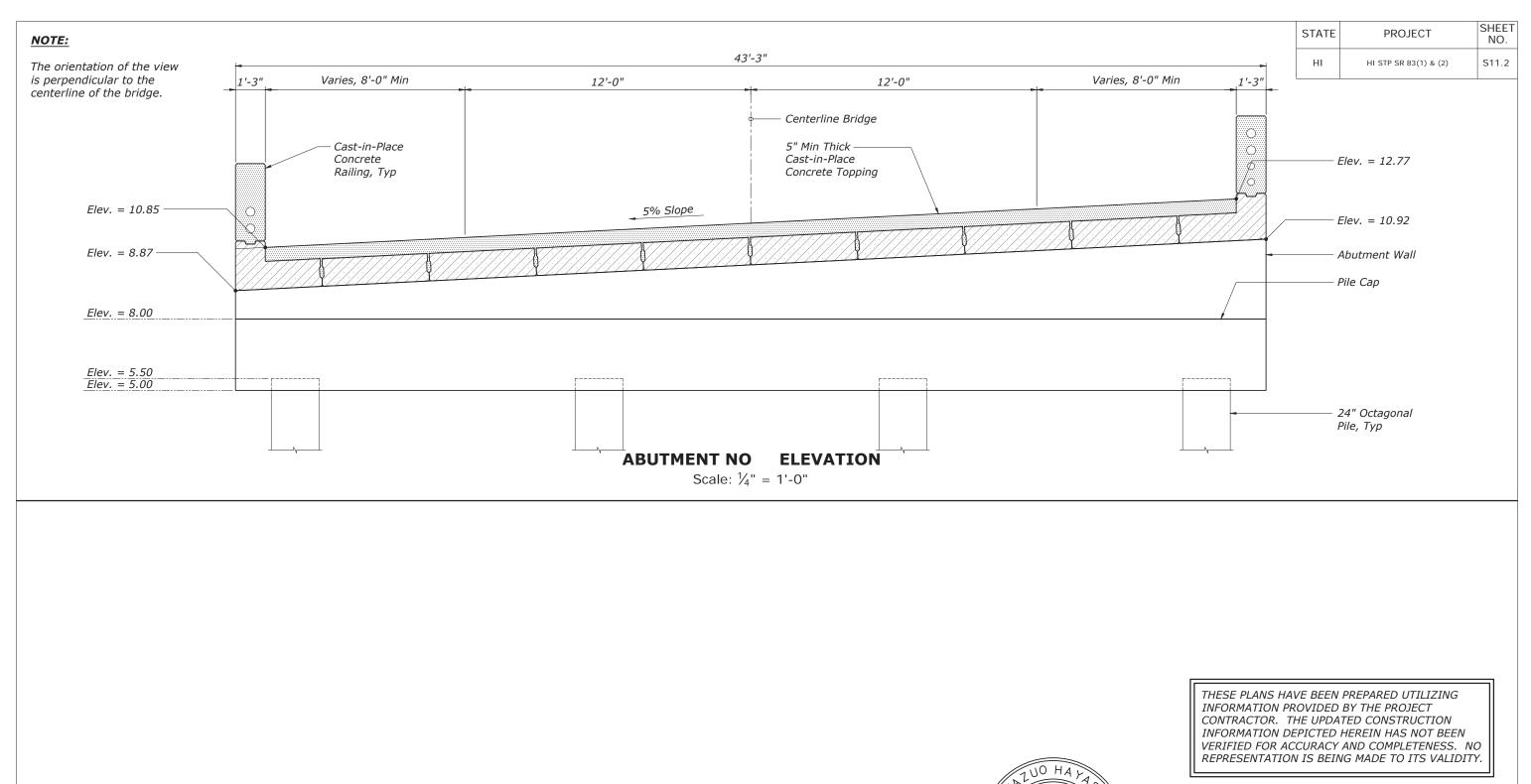
HONOLULU COUNTY, HAWAII

T PICAL CROSS SECTION

NO. DA	TE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		MH	36 of 50	NOVEMBER 2018	RG3084-J
								DE a Do	O/IDD	14111		IVIII	30 01 30	NOVLINIDER 2016	11000013

LICENSED PROFESSIONAL **ENGINEER** No. 6818-S AWAII, U

> THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.


April 30, 2022 EXPIRATION DATE OF THE LICENSE

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

> KAWELA STREAM BRIDGE KAMEHAMEHA HIGHWAY

NAVVEI	A SIREAW DRID	JE	S
KAME	HAMEHA HIGHWA	ΛY	ING
HONOLU	JLU COUNTY, HAV	VAII	ORAWINGS
ABUTMENT	ΓNO ELI	EVATION	BUILT [
BRIDGE DRAWING	DATE	DRAWING NO.	S-E
37 of 50	NOVEMBER 2018	RG3084-K	A

NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		МН	37 of 50	NOVEMBER 2018	RG3084-K

LICENSED
PROFESSIONAL
ENGINEER
U.S. DEPARTMENT OF TRANSPORTATION
FEDERAL HIGHWAY ADMINISTRATION
CENTRAL FEDERAL LANDS HIGHWAY DIVISION

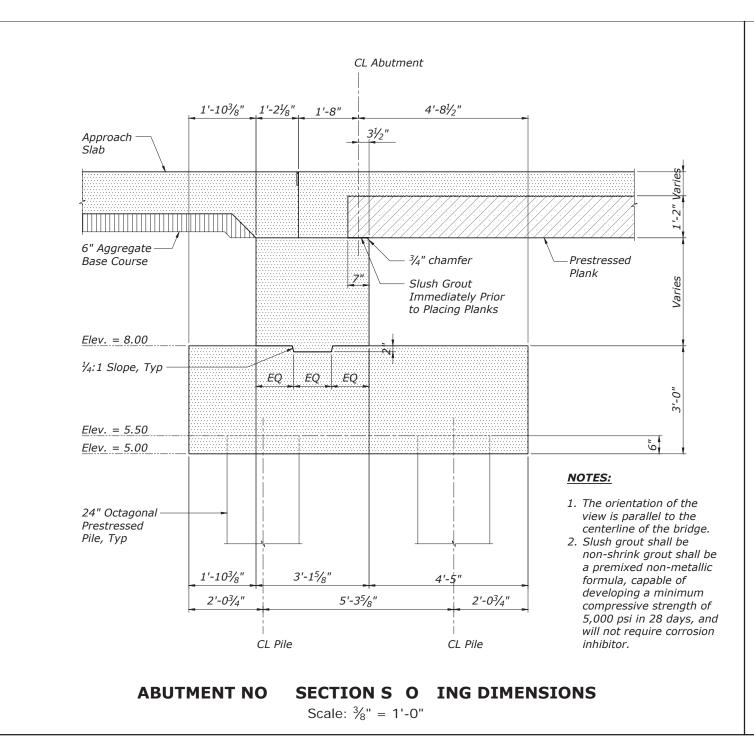
KAWELA STREAM BRIDGE KAMEHAMEHA HIGHWAY

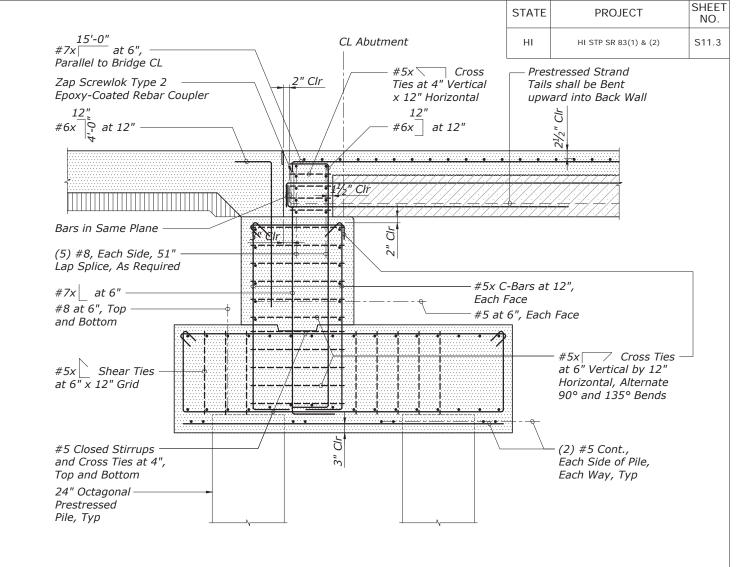
HONOLULU COUNTY, HAWAII

BUILT DRAWINGS

ELEVATION

April 30, 2022	ABUTMENT NO
NATURE EXPIRATION DATE OF THE LICENSE	/\DOTTIENT ITO


No. 6818-S


THIS WORK WAS PREPARED BY

ME OR UNDER MY SUPERVISION.

AWAII, U

T	NO.	DATE	BY	IO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	МН		MLI	38 of 50	NOVEMBER 2018	RG3084-L
								DE & BO	CADD	14111		IVIT	38 01 50	NOVEWIDER 2016	1103004 L

NOTE:

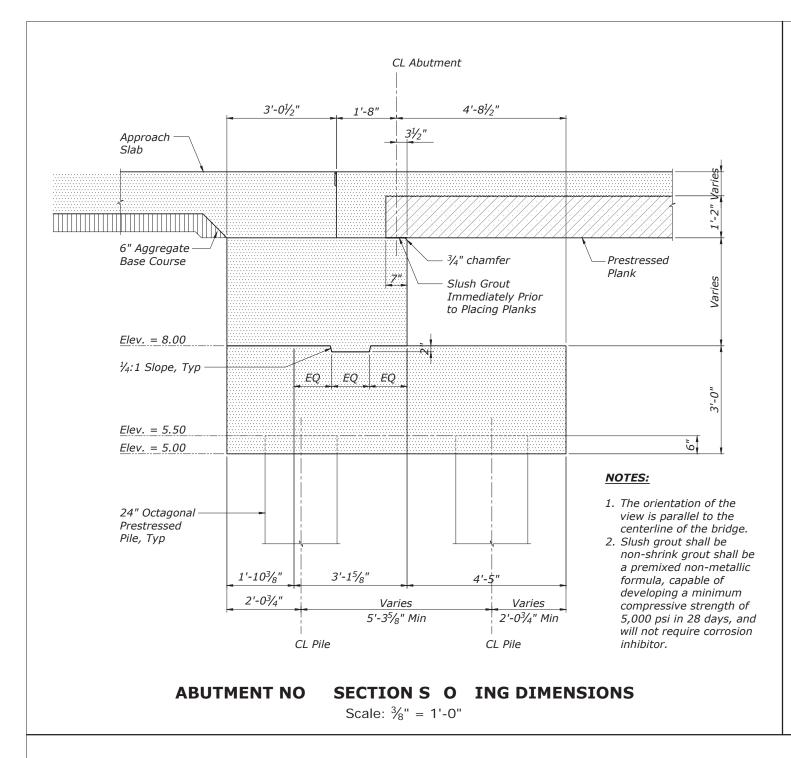
The orientation of the view is parallel to the centerline of the bridge.

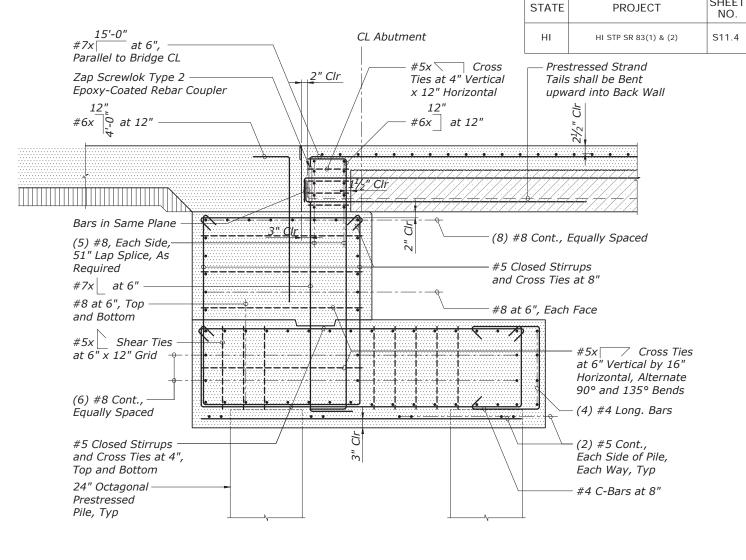
ABUTMENT NO SECTION S O ING REINFORCING

Scale: $\frac{3}{8}$ " = 1'-0"

THESE PLANS HAVE BEEN PREPARED UTILIZING
INFORMATION PROVIDED BY THE PROJECT
CONTRACTOR. THE UPDATED CONSTRUCTION
INFORMATION DEPICTED HEREIN HAS NOT BEEN
VERIFIED FOR ACCURACY AND COMPLETENESS. NO
REPRESENTATION IS BEING MADE TO ITS VALIDITY.

THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.


U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION


> KAWELA STREAM BRIDGE KAMEHAMEHA HIGHWAY

HONOLULU COUNTY, HAWAII

ABUTMENT NO SECT

NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		MH	20 of 50	NOVEMBER 2018	RG3084-M
								DE & DO	CADD	10111		IVIH	39 01 50	NOVEWIDER 2016	INGSOUT IVI

NOTE:

The orientation of the view is parallel to the centerline of the bridge.

ABUTMENT NO SECTION S O ING REINFORCING

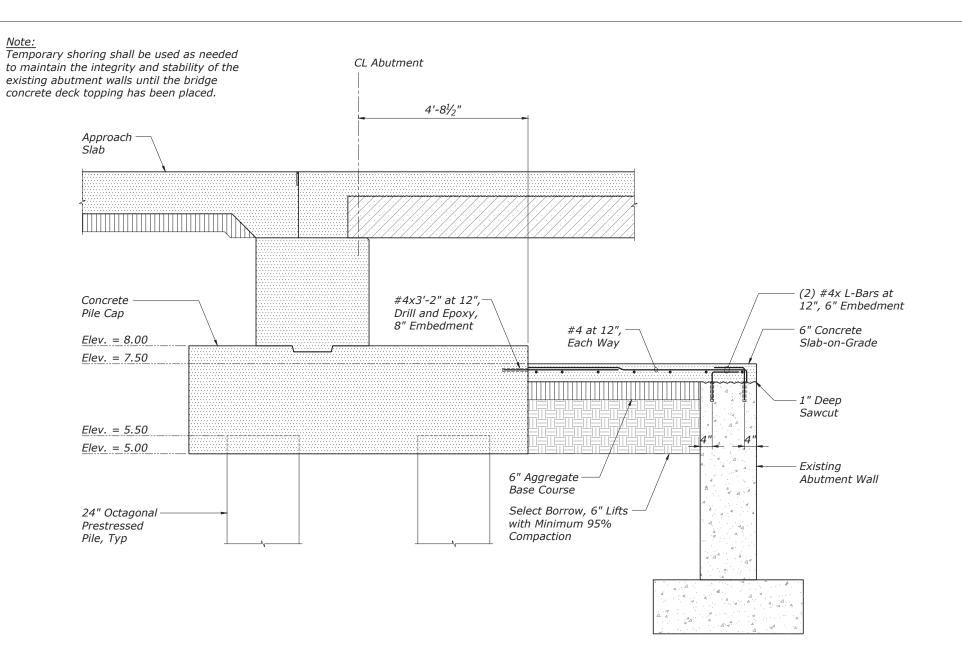
Scale: $\frac{3}{8}$ " = 1'-0"

THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.

ME OR UNDER MY SUPERVISION.

April 30, <u>2022</u> EXPIRATION DATE OF THE LICENSE

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION


> KAWELA STREAM BRIDGE KAMEHAMEHA HIGHWAY

HONOLULU COUNTY, HAWAII

SECTIONS ABUTMENT NO

NO. D	ATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		MILI	40 of 50	NOVEMBER 2018	RG3084-N
								DE & DC	CADD	14111		IVIT	40 01 30	NOVEWIDER 2010	1100004 11

SHEET

T PICAL CONNECTING SLAB

Scale: $\frac{3}{8}$ " = 1'-0"

THESE PLANS HAVE BEEN PREPARED UTILIZING
INFORMATION PROVIDED BY THE PROJECT
CONTRACTOR. THE UPDATED CONSTRUCTION
INFORMATION DEPICTED HEREIN HAS NOT BEEN
VERIFIED FOR ACCURACY AND COMPLETENESS. NO
REPRESENTATION IS BEING MADE TO ITS VALIDITY.

THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

April 30, 2022
SIGNATURE EXPIRATION DATE OF THE LICENSE

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

STATE

ΗΙ

PROJECT

HI STP SR 83(1) & (2)

KAWELA STREAM BRIDGE KAMEHAMEHA HIGHWAY

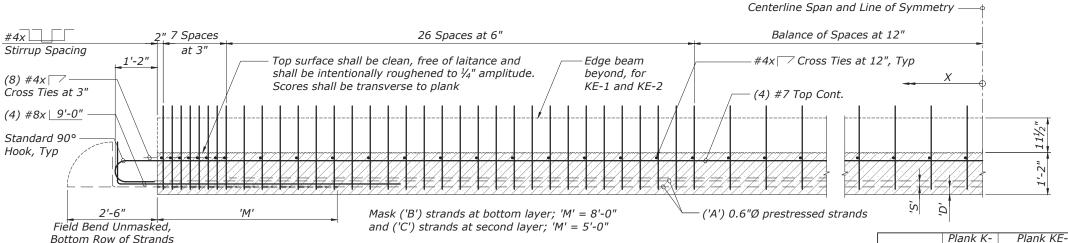
HONOLULU COUNTY, HAWAII

T PICAL CONNECTING SLAB	T	PICAL	CONNECTING S	SLAB
-------------------------	---	--------------	---------------------	------

NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		МН	41 of 50	NOVEMBER 2018	RG3084-O

SHEET

NO.


S11.5

- 1. Prestressed concrete 28 day strength f'c = 8,000 psi. prestressed concrete strength at time of release fci = 6,400 psi.
- 2. Prestressing strands shall be (7) wire 0.6" \emptyset low relaxation steel strands (Area = 0.217 in²) conforming to ASTM A416 with an ultimate tensile strength of 270 ksi. Initial strand stress (immediately prior to release of prestress) = 0.75 f_{nu} = 202.5 ksi.
- 3. Non-prestressed reinforcing steel shall be deformed bars conforming to ASTM A615 or A706, Grade 60, unless noted otherwise.
- 4. Strand pattern shall be symmetrical about the longitudinal centerline of the plank.
- Strand release sequence shall not induce any lateral deflection of the plank.
- 6. Contractor shall submit shop drawings indicating proposed strand pattern, releasing sequence, reinforcing details and hold down device details to the engineer prior to fabrication.
- 7. During curing, care shall be taken to avoid any lateral deflection to the plank due to improper orientation. steam curing may be used to accelerate strength gain.
- 8. Lifting devices shall be placed as close as possible to the centerline of bearings of the plank. details and locations of lifting devices shall be submitted to the engineer for approval. such approval does not relieve the contractor of his responsibilities if plank is damaged due to failure of the lifting device.
- 9. $P_{(e)} = \text{effective prestress force after all losses (kips)}$
- 10. Plank stirrups shall be placed parallel to the bridge skew.
- 11. Top row of unmasked strands shall be cut flush with the face of plank.

Notes:

- 1. The plank lengths shown do not include changes in length increase due to elastic and time dependent shortening effects and longitudinal slope of the plank.
- 2. The unmasked strands shall have 2'-6" extension at both ends of each plank.

STATE	PROJECT	SHEET NO.	
НІ	HI STP SR 83(1) & (2)	S12.1	

T PICAL PRESTRESSED PLAN ELEVATION

Scale: $\frac{3}{8}$ " = 1'-0"

	I Idilik ik	I Idilik KL
'A'	32	24
'B'	6	4
'C'	0	2
P _(e) [kips]	1,144	880
C.G.S. [in]	3.25	4.25
'D' [in]	2.5	2.5
'S' [in]	2	3

Required Actions:

3" (K-1 thru K-8)

concrete

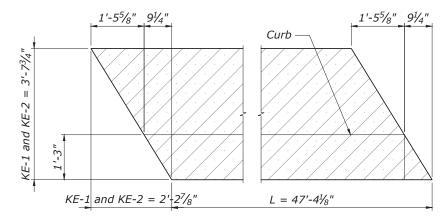
 $1\frac{1}{2}$ " (KE-1 and KE-2)

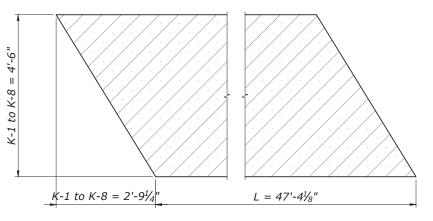
Estimated plank camber

before placement of deck

Precast slab position before

placement of deck concrete


- 1. Measure slab camber prior to setting deck forms. If the actual camber exceeds the estimated slab camber (3" for interior planks and 1½" for exterior planks) by more than 1", the fillet will have to be increased by raising profile grade as directed by the owner.
- 2. Set the deck forms and camber the deck machine screed rails to offset the slab deflections (½") due to deck placement.
- 3. Bridge precast slab seat elevations were calculated using dead load deflections of the deck so that top of precast slab will be a minimum of 1" below bottom of deck at any point in the span, allowing for precast slab depth and slab camber tolerance.


CL Bearing

CL Span

DEC FORM SETTING DIAGRAM

Not to Scale

Reinforcing not shown for clarity.

Deflection Equation:

$$\Delta = \frac{1}{2}" - X^2(1092.8^{-1})$$

Where:

CL Bearing

 $\frac{1}{2}$ " Deflection (Δ)

due to placement

of deck concrete

Final position

of precast slab

 Δ = Deflection, in inches, of slab at any point caused by the weight of deck X = Distance, in feet, measured from midspan (See diagram)

Note:

 Δ max = $\frac{1}{2}$ " at X = 0' (Midspan) Δ min = 0" at X = 23'-4 $\frac{1}{2}$ " (CL Bearing)

THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.

T PICAL PRESTRESSED PLAN PLAN

Scale: $\frac{3}{8}$ " = 1'-0"

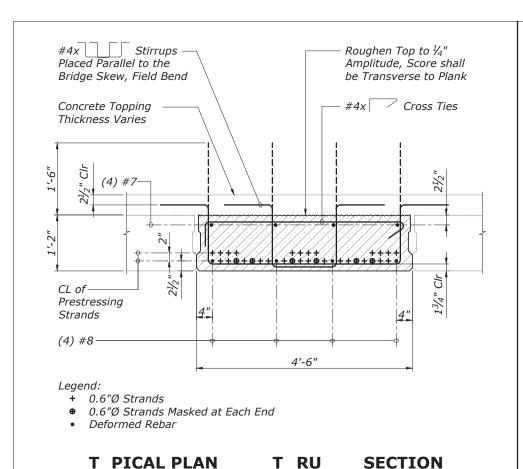
LICENSED
PROFESSIONAL
ENGINEER
No. 6818-S

THIS WORK WAS PREPARED BY

ME OR UNDER MY SUPERVISION.

FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

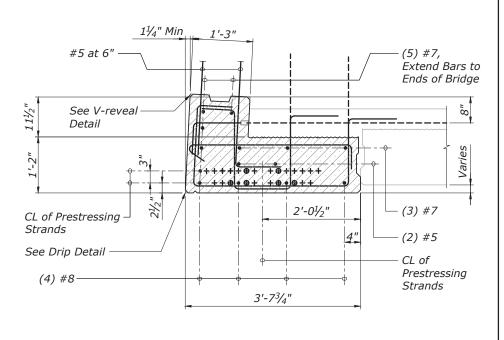
U.S. DEPARTMENT OF TRANSPORTATION


KAWELA STREAM BRIDGE KAMEHAMEHA HIGHWAY

HONOLULU COUNTY, HAWAII

April 30, 2022 URE EXPIRATION DATE OF THE LICENSE PREST

PRESTRESSED	PLAN
--------------------	------


NO. DAT	E BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
							BL & BC	CADD	MH		NALI	42 of 50	NOVEMBER 2018	RG3084-P
							DE & DO	CADD	IVIII		IVITI	42 01 50	NOVEWBER 2016	1030041

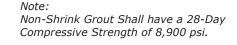
Scale: $\frac{1}{2}$ " = 1'-0"

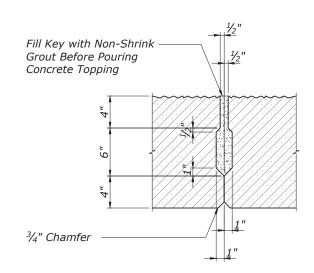
1. Edge of Bridge and Railing Connections shall be at a 2.86° Incline from the Bottom of the Plank.

2. For Balance of Information, See Typical Plank K-1 thru K-8 Section.

T PICAL PLAN E SECTION

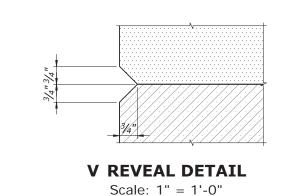
Scale: $\frac{1}{2}$ " = 1'-0"

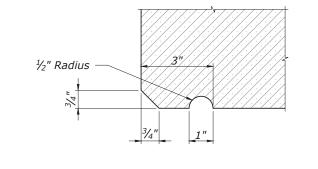

Notes:	STATE	PROJECT
1. Edge of Bridge and Railing Connections	ш	HI STD SD 83(1) 8. (2)


 Edge of Bridge and Railing Connections shall be at a 2.86° Incline from the Bottom of the Plank.
 For Balance of Information, See Typical

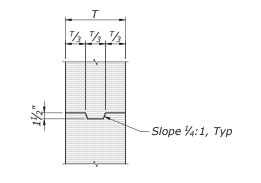
Plank K-1 thru K-8 Section. 1'-3" (5) #7, -#5 at 6" Extend Bars to Ends of Bridge See V-reveal Detail <u>++994+++998++++</u> ˈ*(3) #7* — 2'-01/2" CL of Prestressing (2) #5 — Strands See Drip Detail CL of -Prestressing (4) #8 Strands 3'-73/4" 13/16"

T PICAL PLAN E SECTION


Scale: $\frac{1}{2}$ " = 1'-0"



E DETAIL


Scale: 1" = 1'-0"

DRIP DETAIL

Scale: 1" = 1'-0"

CURB E DETAIL

Scale: $\frac{1}{2}$ " = 1'-0"

THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

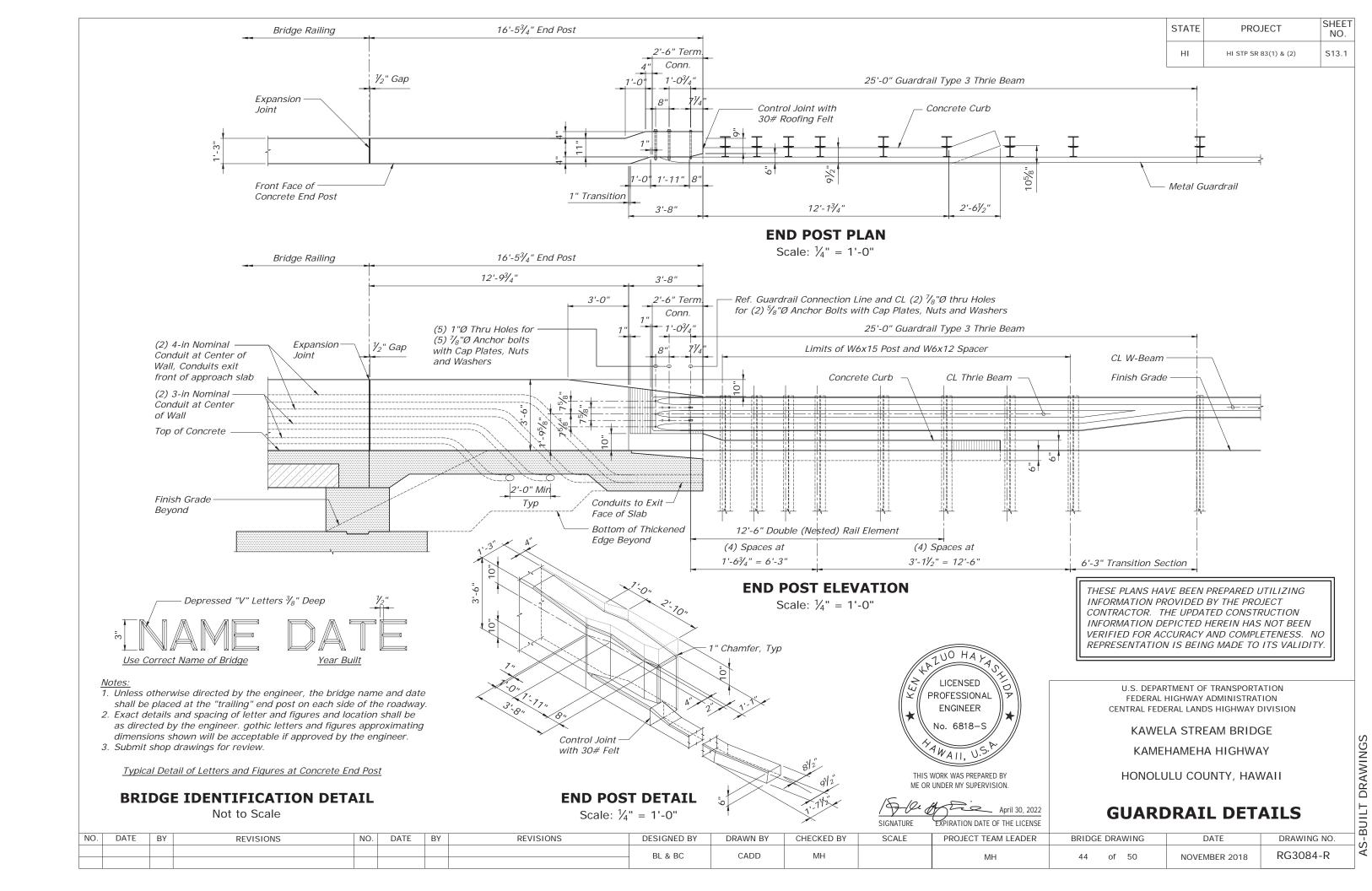
THESE PLANS HAVE BEEN PREPARED UTILIZING

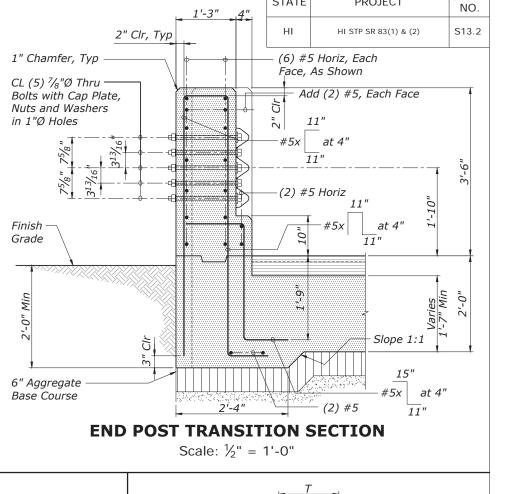
CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.

INFORMATION PROVIDED BY THE PROJECT

KAWELA STREAM BRIDGE KAMEHAMEHA HIGHWAY

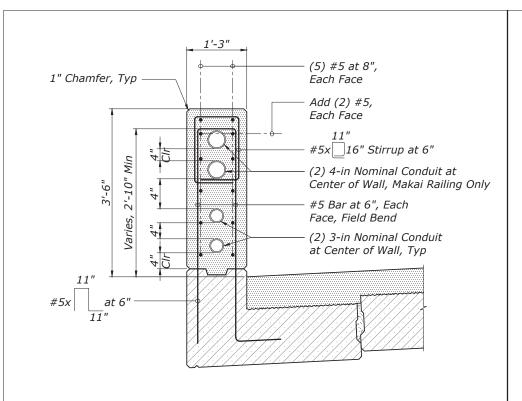
HONOLULU COUNTY, HAWAII


PLAN SECTIONS


NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		ML	43 of 50	NOVEMBER 2018	RG3084-Q
								DE & DO	CABB	10111		IVITI	43 01 30	NOVEWIDER 2016	1103004 Q

SHEET

NO.


S12.2

STATE

PROJECT

RAILING SECTION

Scale: $\frac{1}{2}$ " = 1'-0"

Typical Horizontal

Top of Cast-in-Place

1/2" Thick Premolded

4-in Nominal Conduit at Center of Wall, Typ

Top of Prestressed

Plank Edge Beam

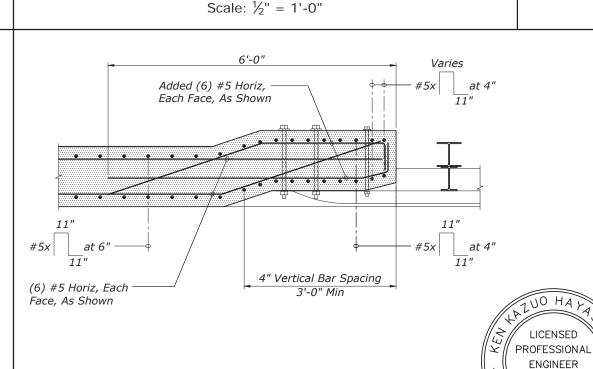
Top of Concrete

Topping Beyond

Expansion Joint Coupling, Typ

Bottom of Prestressed Plank

4-in Nominal Conduit


Reinforcing

Joint Filler

Railing

 $\frac{1}{2}$ " Joint

2" Clr, Typ

2'-0"

END POST SECTION

2" Clr, Typ

(6) #5 Horiz, Each

Add (2) #5, Each Face

Wall, Makai Railing Only

(2) 3-in Nominal Conduit

Slope 1:1

at Center of Wall, Typ

(2) 4-in Nominal Conduit at Center of

(2) #5

Face, As Shown

1" Chamfer, Typ

Finish -

Grade

11"

at 6

#5x

6" Aggregate

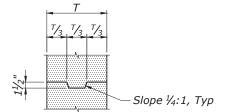
Base Course

RAILING E PANSION OINT DETAIL

Scale: $\frac{1}{2}$ " = 1'-0"

END POST TRANSITION PLAN SECTION

Scale: $\frac{1}{2}$ " = 1'-0"



THIS WORK WAS PREPARED BY

ME OR UNDER MY SUPERVISION.

No. 6818-5

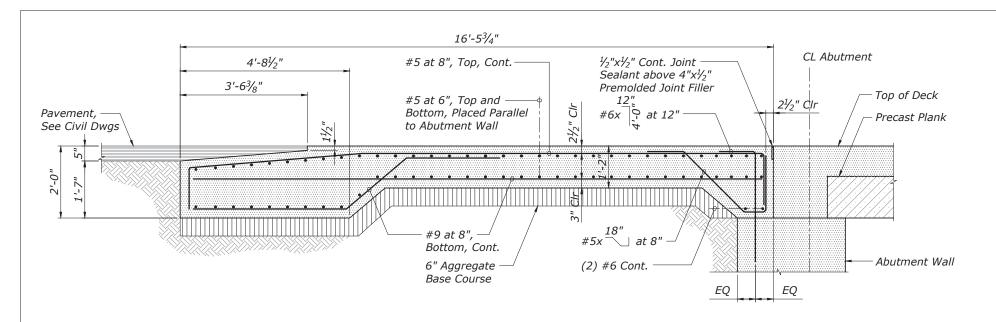
AWAII, U

S EAR E DETAIL

Scale: $\frac{1}{2}$ " = 1'-0"

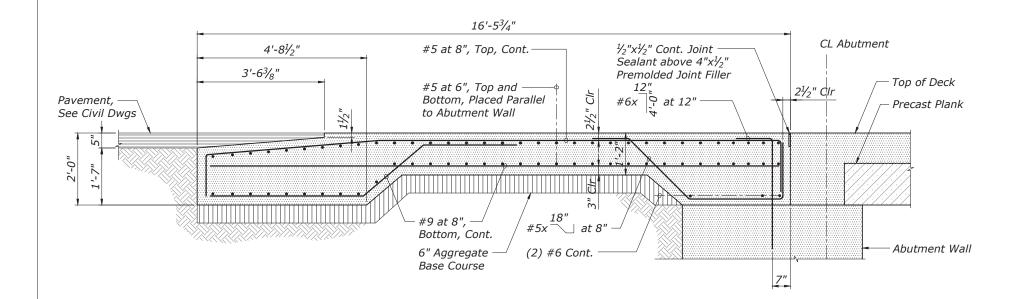
THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION


> KAWELA STREAM BRIDGE KAMEHAMEHA HIGHWAY

HONOLULU COUNTY, HAWAII

RAILING SECTION


NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	MH		MH	45 of 50	NOVEMBER 2018	RG3084-S
								DL & DC	CADD	IVIII		IVIT	45 01 50	NOVEWIDER 2016	103004 3

SHEET

ABUTMENT NO APPROAC SLAB SECTION

Scale: $\frac{3}{8}$ " = 1'-0"

ABUTMENT NO APPROAC SLAB SECTION

Scale: $\frac{3}{8}$ " = 1'-0"

THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

HONOLULU COU	NTY, HAWAII
T PI	
APPROAC SLA	AB SECTIONS

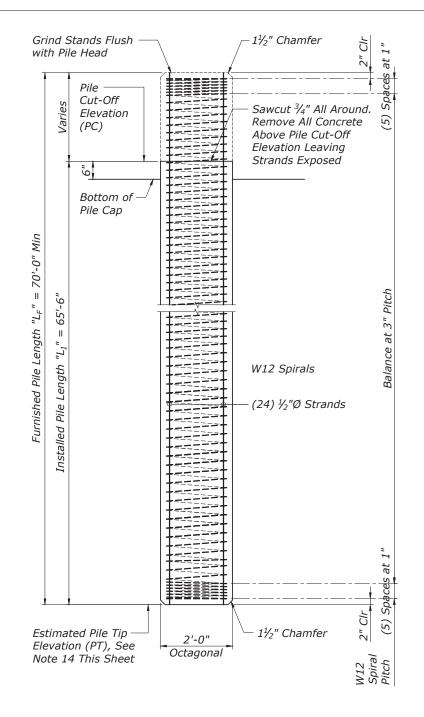
DATE REVISIONS DATE REVISIONS DESIGNED BY DRAWN BY CHECKED BY PROJECT TEAM LEADER BRIDGE DRAWING DRAWING NO. NO. BY NO. BY SCALE DATE BL & BC CADD 46 of 50 NOVEMBER 2018 RG3084-T MH

NOTES:

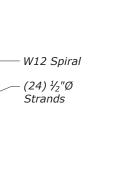
- 1. The orientation of the view is parallel to the centerline of the bridge.
- 2. Abutment and deck reinforcing not shown for clarity.

STATE	PROJECT	SHEET NO.
НІ	HI STP SR 83(1) & (2)	S14.1

THESE PLANS HAVE BEEN PREPARED UTILIZING INFORMATION PROVIDED BY THE PROJECT CONTRACTOR. THE UPDATED CONSTRUCTION INFORMATION DEPICTED HEREIN HAS NOT BEEN VERIFIED FOR ACCURACY AND COMPLETENESS. NO REPRESENTATION IS BEING MADE TO ITS VALIDITY.


U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION

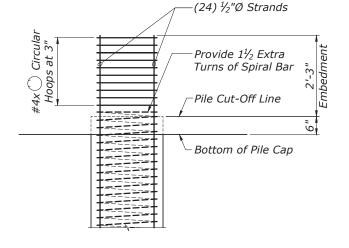
> KAWELA STREAM BRIDGE KAMEHAMEHA HIGHWAY


Precast Prestressed Pile Notes:

- 1. Prestressed concrete 28 day compressive strength, f'c = 6,000 psi. Prestressed concrete strength at time of release, f'c = 4,500 psi.
- 2. Pile build-up concrete 28 day compressive strength (with and without driving), f'c = 6,000 psi.
- 3. Prestressing strands shall be 7 wire, $\frac{1}{2}$ "Ø low relaxation steel strands (area = 0.153 in²) with an ultimate tensile strength of 270 ksi, initial strand stress (before any losses) = 202.5 ksi.
- 4. Non-prestressed reinforcing steel shall be deformed bars conforming to AASHTO M31, grade 60. spiral reinforcement shall conform to AASHTO M32.
- 5. The effective prestressing force in the pile after all losses shall be 595 kips.
- 6. Piles accepted by the engineer shall be of sound concrete. damaged piles shall be replaced or repaired as directed by the engineer at the contractor's expense.
- 7. Each pile location shall be predrilled to an elevation of -40.0 feet MSL. The diameter of the predrilled holes shall be limited to the diagonal dimension of the pile to provide the driven piles with sufficient soil/rock contact for lateral load resistance. The annular space between piles and predrilled holes shall be filled with sand. The predrilling depths shall be confirmed and/or modified by the geotechnichal engineer of record during construction.
- 8. Piles shall be driven with a hammer capable of delivering a minimum rated energy of approximately 60,000 foot pounds of energy. The hammer shall be equipped with energy control level. Prior to construction, pile and driving equipment data forms shall be reviewed and approved by the engineer.
- Piles shall be driven continuously without interruption. Piles may be rejected when the driving resistance is interrupted for more than four hours and the pile cannot be driven to the required depth.
- 10. The geotechnical engineer should be present during all pile driving operations to observe the actual driving behavior and to further evaluate the field performance.
- 11. Work of cutting off prestressed concrete piles or concrete pile build-ups shall be performed in such a manner as to avoid spalling or damaging of the pile below cut off.

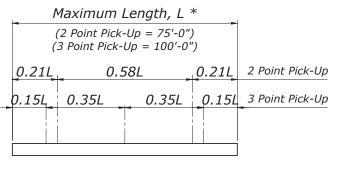
 Damaged portions shall be removed and pile cut-off elevation lowered as directed by the engineer.
- 12. Top of pile at cut-off line shall be prepared as required for construction joint in the specifications.
- 13. Pile splice will not be permitted.
- 14. Estimated Pile Tip Elevation (PT) is -60.0 feet MSL.

STATE	PROJECT	SHEET NO.	
НІ	HI STP SR 83(1) & (2)	S15.1	



PILE CROSS SECTION

Octagonal


Scale: $\frac{3}{8}$ " = 1'-0"

2" Clr, Typ

PILE EMBEDMENT DETAIL

Scale: $\frac{3}{8}$ " = 1'-0"

* The length "L" is the distance end to end of pile.

PRESTRESSED PILE DETAIL

Scale: $\frac{3}{8}$ " = 1'-0"

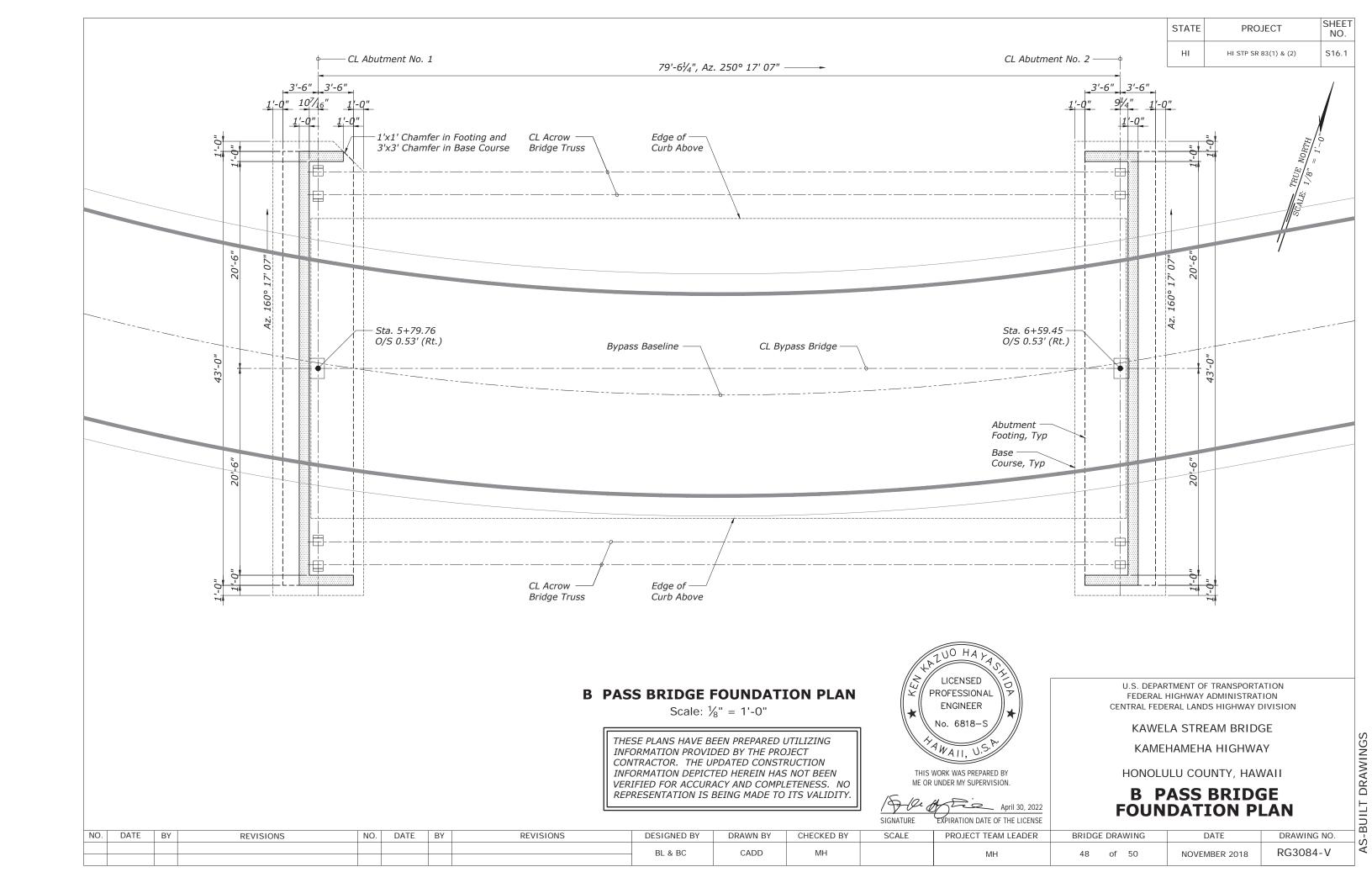
THESE PLANS HAVE BEEN PREPARED UTILIZING
INFORMATION PROVIDED BY THE PROJECT
CONTRACTOR. THE UPDATED CONSTRUCTION
INFORMATION DEPICTED HEREIN HAS NOT BEEN
VERIFIED FOR ACCURACY AND COMPLETENESS. NO
REPRESENTATION IS BEING MADE TO ITS VALIDITY.

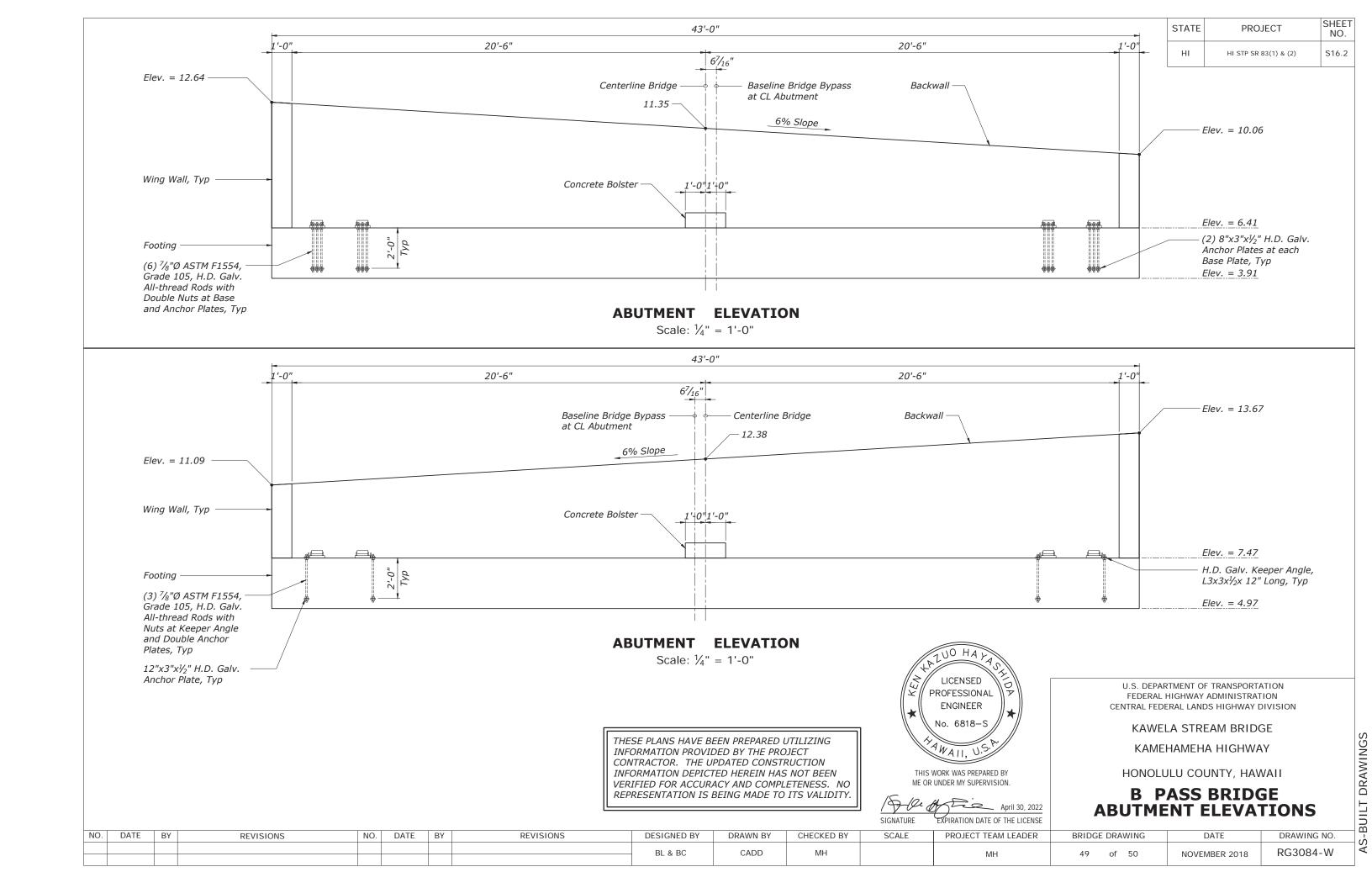
THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION.

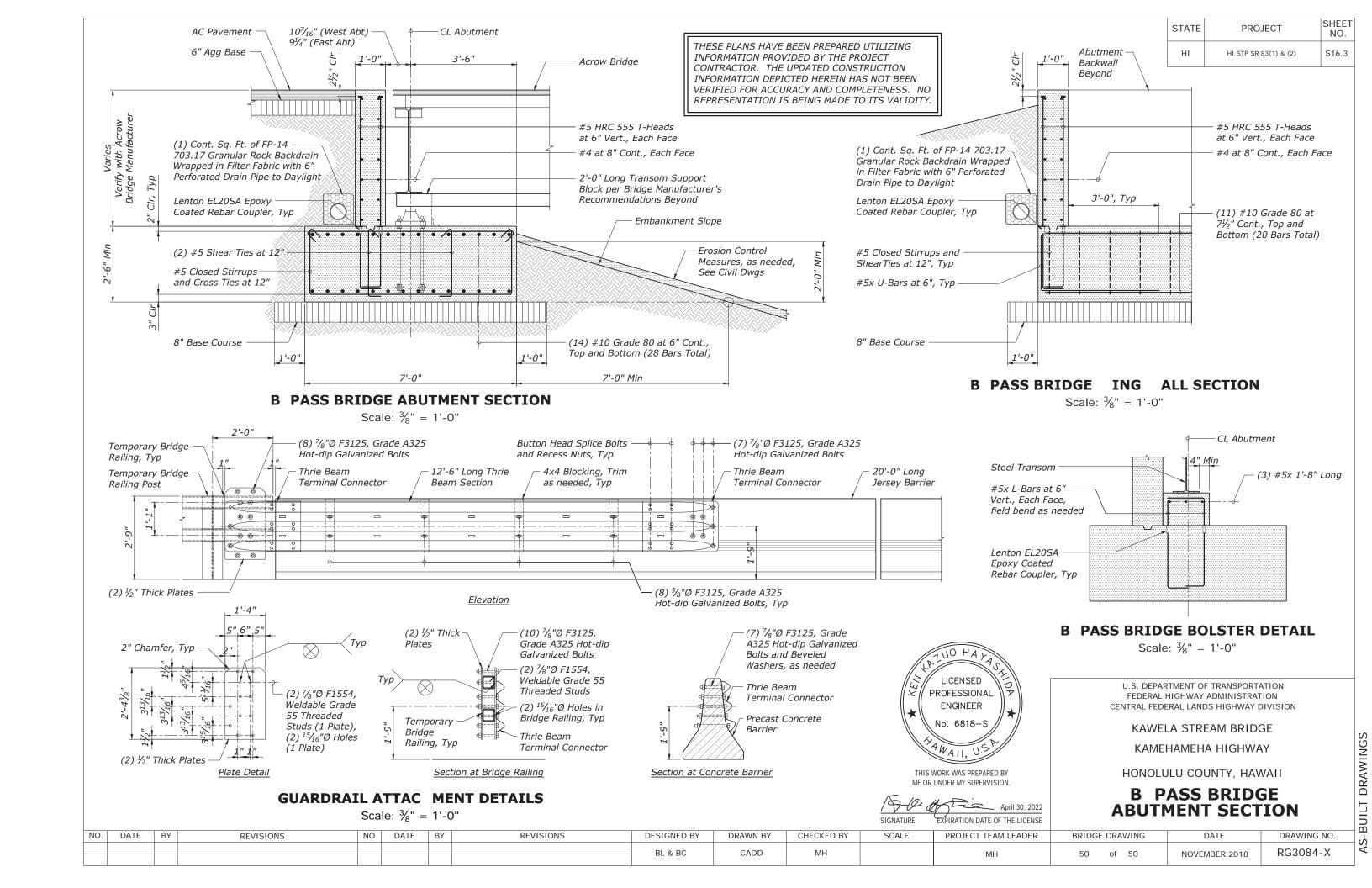
April 30, 2022
SIGNATURE EXPIRATION DATE OF THE LICENSE

PILE PIC UP POINTS

Not to Scale


U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION CENTRAL FEDERAL LANDS HIGHWAY DIVISION


KAWELA STREAM BRIDGE KAMEHAMEHA HIGHWAY


HONOLULU COUNTY, HAWAII

T PICAL PRESTRESSED PILE NOTES AND DETAILS

NO.	DATE	BY	REVISIONS	NO.	DATE	BY	REVISIONS	DESIGNED BY	DRAWN BY	CHECKED BY	SCALE	PROJECT TEAM LEADER	BRIDGE DRAWING	DATE	DRAWING NO.
								BL & BC	CADD	МН		MILI	47 of 50	NOVEMBER 2018	RG3084-U
								DE & DC	CABB	IVIII		IVIE	47 01 50	NOVEWIBER 2016	1103004 0

