
CUEET NO	ΠΕΩΠΟΤΙΛΝ
<u>SHEET NO.</u>	DESCRIPTION
S0.1	INDEX OF STRUCTURAL DRAWINGS
S0.1A	INDEX OF STRUCTURAL DRAWINGS
<i>S0.2</i>	STRUCTURAL GENERAL NOTES
<i>S0.3</i>	STRUCTURAL GENERAL NOTES
S0.4	STRUCTURAL GENERAL NOTES
<i>S0.</i> 5	SYMBOLS AND ABBREVIATIONS
<i>S1.1</i>	LAYOUT PLAN
	LONGITUDINAL SECTION
	ROCK SHED ELEVATION
	FOUNDATION PLAN
	ROOF FRAMING PLAN
	TOPPING PLAN
JI.U	
S2.1	DEMOLITION PLAN AND ELEVATION
S2.2	DEMOLITION SECTION AND DETAIL
S2.3	DEMOLITION PLAN AT OUTBOUND TUNNEL PORTAL
S3 . 1	TYPICAL SECTION
S3 . 2	SECTION AT EXISTING PORTAL FACE
S3 . 3	SECTION AT NEW PORTAL FACE
S3.3A	SECTION AT NEW PORTAL FACE
S3.3B	SECTION AT NEW PORTAL FACE
S3.3C	SECTION AT NEW PORTAL FACE
<i>S4.</i> 1	DRILLED SHAFT
S4 . 2	DRILLED SHAFT
S4 . 3	DRILLED SHAFT SCHEDULE
S5 . 1	COLUMN 1 AND 2 ELEVATION AND SECTIONS
S5 . 2	COLUMN 3 ELEVATION AND SECTIONS
S5.2A	COLUMN 3 TRANSITION ZONE SECTIONS
S5 . 3	COLUMN 3 PLAN AND SECTIONS
<i>S5</i> .4	COLUMN 3 SECTIONS
S5 . 5	COLUMN 3 CREEP BLOCK

E. SUR DRA TRA DES QUA CHE

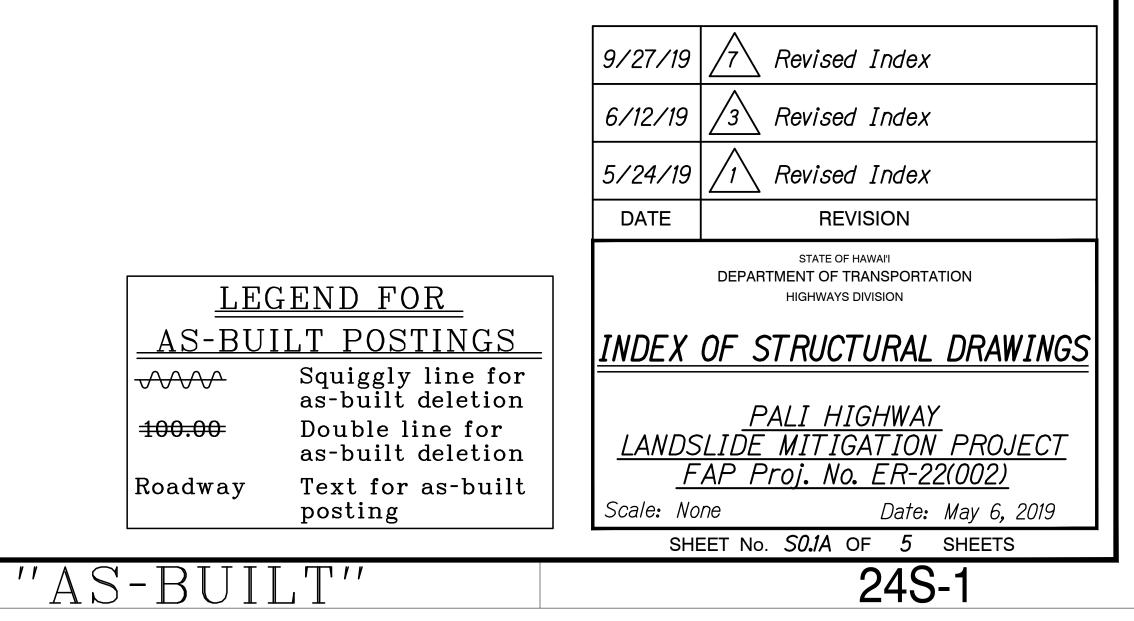
INDEX OF STRUCTURAL DRAWINGS

Sheet no.	DESCRIPTION	<u>SHEET NO.</u>	DESCRIPTION
S6 . 1	COLUMN CAP BEAM ELEVATION	S10.1	UPTURN CURB ELEVATION AT NEW PORTAL
S6 . 2	COLUMN CAP BEAM SECTIONS	S10.2	UPTURN CURB SECTIONS AT NEW PORTAL
56.2A	COLUMN CAP BEAM SECTIONS	S10.2A	PRECAST PORTAL AND LOWER CONTAINMENT
S6 . 3	COLUMN CAP BEAM AND SEAT SECTIONS		WALL REBAR ALTERATION
S6 . 4	COLUMN CAP BEAM AND SECTIONS	<i>S10.3</i>	UPTURN CURB SECTIONS AT EXISTING PORTAL
		S10.4	EXISTING PORTAL FACE EXTENSION SECTION
S7 . 1	RETAINING WALL ELEVATION	S10 . 5	HEADWALL SECTIONS
S7 . 2	TYPICAL RETAINING WALL SECTION	S10.6	HEADWALL SECTION AND DETAIL
S7 . 3	SECTIONS		
S7 . 4	ANCHOR BEAM PLAN AND SECTION	<i>S11.1</i>	ROCK ANCHOR SECTIONS
S7 . 5	PLAN AT EXISTING DRAIN BOX	<i>S11.2</i>	ROCK ANCHOR SECTION
S7 . 6	POST-TENSIONING DEAD END ANCHOR	<i>S11.3</i>	VERTICAL GROUND ANCHOR
S7 . 7	POST-TENSIONING STRESSING END ANCHOR	S11.4	RELIEF SLAB PLAN AND SECTION
S7.7A	POST-TENSIONING STRESSING END ANCHOR	S11.5	ROCK ANCHOR CAP BEAM DETAILS
57.7B	POST-TENSIONING STRESSING END ANCHOR		
S7 . 8	POST-TENSIONING NOTES	S12.1	MAKAI END POST PLAN AND ELEVATION
S7 . 9	RETAINING WALL SECTIONS	S12.2	MAKAI END POST REINFORCEMENT LAYOUT PLAN
S7 . 10	RETAINING WALL RETURN FOOTING PLAN	S12.2A	MAKAI END POST REINFORCEMENT LAYOUT PLAN
S7 . 11	TYPICAL WALL DETAILS	S12.3	MAKAI END POST SECTIONS
S7 . 12	BARRIER ELEVATION	S12.3A	MAKAI END POST SECTION
57.13	RETAINING WALL RETURN ELEVATION AND SECTION	S12.4	MAKAI END POST SECTION
S7.14	INFILL WALL		
S8.1	TYPICAL ROOF SECTION		
S8.2	ROOF SECTIONS AT NEW PORTAL FACE AND EXISTING INLET PORTAL DECK SECTION		
S8 . 3	UPPER CONTAINMENT WALL AND LOWER CONTAINMENT WALL		9/27/19 <u>7</u> Revised Index 6/12/19 <u>3</u> Revised Index
S8.4	UPPER CONTAINMENT WALL AND LOWER CONTAINMENT WALL ELEVATIONS		5/24/19 1 Revised Index DATE REVISION
		LEGE	STATE OF HAWAI'I DEPARTMENT OF TRANSPORTATION HIGHWAYS DIVISION
59.1	PLANK PLAN AND ELEVATION		T POSTINGS INDEX OF STRUCTURAL DRAW
<i>S9</i> .2	PLANK SECTIONS AND DETAIL		Squiggly line for
<i>S9.3</i>	CONCRETE SEAT SECTIONS AND DETAIL	100.00	Double line for as-built deletion <u>PALI HIGHWAY</u> <u>LANDSLIDE MITIGATION PROJ</u>

FED. ROAD DIST. NO.	STATE	FEDERAL AID PROJ. NO.	FISCAL YEAR	SHEET NO.	TOTAL SHEETS
HAWAII	HAW.	ER-22(002)	2019	ADD 24	94

	<u>INDEX OF BRIDGE DRAV</u>
<u>SHEET NO.</u>	<u>DESCRIPTION</u>
S13.1	PLANTER BOX LAYOUT AND DEMO PLA
S13.2	PLANTER BOX BOTTOM SLAB REINFOR
S13.3	PLANTER BOX WALL REINFORCING PL
S13.4	PLANTER BOX SECTIONS
S13.5	PLANTER BOX SECTIONS
S14.1	ELECTRICAL BUILDING LAYOUT PLAN
S14.2	ELECTRICAL BUILDING SECTION
S14.3	ELECTRICAL BUILDING SECTION AND

TTE


SURVEY PLOTTE DRAWN BY ______ TRACED BY ______ DESIGNED BY _____ QUANTITIES BY _____ CHECKED BY _____

JK

ORIGINAI PLAN NOTE BOO No.____

	FED. ROAD DIST. NO.	STATE	FEDERAL AID PROJ. NO.	FISCAL YEAR	SHEET NO.	TOTAL SHEETS	
AWINGS	HAWAII	HAW.	ER-22(002)	2019	245-1	94	

WINGS
LAN
RCING PLAN
LAN
N
DETAILS

General Specifications:

A. Hawaii Department of Transportation (HDOT), Standard Specifications for Road and Bridge, Construction, 2005, together with Special Provisions prepared for this project.

2. <u>Design Specifications:</u>

- A. American Association of State Highway and Transportation Officials (AASHTO) 2017 LRFD Bridge Design Specifications, Eight Edition, including the 2015 Interim revision edition as amended by Hawaii Department of Transportation (HDOT) document dated August 8, 2014 with subject title "Design Criteria for Bridges and Structures" and HDOT memorandum dated January 8, 2018 with subject title "Changes to Design Criteria for Bridges and Structures".
- B. Technical paper titled "Rock Fall Sheds Application of Japanese Designs in North America" by Hiroshi Yoshida, Toshimitsu Nomura, Duncan C. Wyllie, and Anthony J. Morris presented to ASCE in 2007.

<u>Design Loads:</u>

- A. Dead Load: Weight of all components of the structures, appurtenances attached thereto, and earth covers. Unit Weight of Concrete - 160 pcf Unit Weight of Compacted Earth - 120 pcf Unit Weight of Debris Buildup - 95 pcf Energy Absorbing Material - 1.8 pcf
- B. Seismic Load: In accordance with AASHTO LFRD Bridge Design Specifications 8th Edition 2017

Peak Ground Acceleration (PGA = 0.171) modified by the Site Coefficient (F_{PGA} = 1.206) to give a spectrum acceleration, A_s = 0.206

Short period acceleration at 0.2 seconds ($S_s = 0.400$) modified by the Site Coefficient ($F_{PGA} = 1.206$) to give the short period spectrum acceleration, $S_{ns} = 0.483$.

Long period acceleration at 1.0 seconds (S₁ = 0.109) modified by the Site Coefficient (F_V = 1.694) to give the long period spectrum acceleration, S_{pl} = 0.185.

Site Class = C Seismic Zone = 2 Operational Category = Essential

C. Soil Properties:

- (1) Bearing Pressure

 (a) Extreme Event Limit State 31,000 psf
 (b) Strength Limit State 15,000 psf

 (2) Coefficient of Friction

 (a) Extreme Event Limit State 0.62
- (b) Strength Limit State 0.53

STRUCTURAL GENERAL NOTES:

- 3. <u>Design Loads (Continued):</u>
 - (3) Passive Earth Pressure
 - (a) Extreme Event Limit State 300 pcf
 - (b) Strength Limit State 150 pcf
 - (4) Static Lateral Earth Pressure 5 pcf
 - (5) Dynamic Lateral Earth Pressure 13H ²lb/ft Where H = Height of retained soil or backfill in feet acting at the mid-height of the wall.
 - C. Wind: Design Wind Velocity 105 MPH (Acting on the portal)

4. <u>Materials</u>:

A. All concrete properties shall be as noted below:

	Item No.	Structural Parts	Minimum Compressive Strength, f'c (28 Days)	Maximun Water/ Cement (W/C)	
	(1)	Footing	6,000 psi	0.40	4.(B), 4.(C)
	(2)	Retaining Wall and End Post	+ 6,000 psi	0.40	4.(B), 4.(C), 4.(D), 4.(E)
	(3)	Drilled Shafts	4,500 psi	0.45	4 . (B)
	(4)	Column	6,000 psi	0.40	4. (B)
	(5)	Column Pilaster	6,000 psi	0.40	4.(B), 4.(C)
	(6)	Column Corbel	6,000 psi	0.40	4.(B), 4.(C), 4.(D), 4.(E)
	(7)	Column Cap Beam Seat and Curtain Wall	6,000 psi	0.40	4.(B), 4.(C), 4.(D)
	(8)	Transition Zone	6,000 psi	0.40	4 . (B)
	(9)	Column Cap Beam	6,000 psi	0.40	4.(B), 4.(C), 4.(D), 4.(E)
	(10)	End Beam	6,000 psi	0.40	4.(B), 4.(C), 4.(D), 4.(E)
	(11)	Headwall	6,000 psi	0.40	4.(B), 4.(C), 4.(D), 4.(E), 4.(R)
\wedge	(12) \	Rock Anchor Beam and Cap Beam	6,000 psi	0 . 40	4.(B), 4.(C), 4.(D)
	(13)	Upturn Curbs	6,000 psi	0.40	4.(B), 4.(C), 4.(D), 4.(E)
	(14)	Wall Extension on existing Portal	6,000 psi	0.40	4.(B), 4.(C), 4.(D), 4.(E)
	(15)	Anchor Block	6,000 psi	0.40	4.(B), 4.(C), 4.(D), 4.(E)
	(16)	Precast Planks	8,000 psi	0.40	4.(B), 4.(C)
	(17)	CIP Topping	6,000 psi	0.40	4.(B), 4.(C), 4.(D), 4.(E)
	(18)	Precast Portal	6,000 psi	0.40	4.(B), 4.(C), 4.(D), 4.(R)
	(19)	CIP Planter at Precast Portal	5,000 psi	0.40	4.(B), 4.(C), 4.(D), 4.(E), 4.(R) ∧
	(20)	Shotcrete	5,000 psi	0.40	<u>/8</u> 4.(F)
	(21)	Lower Containment Wall and Upper Containment Wall	6,000 psi	0.40	4.(B), 4.(C), 4.(D), 4.(E), 4.(R)
	(22)	Return Wall	6,000 psi	0.40	4.(B), 4.(C), 4.(D), 4.(E), 4.(R)
	(23)	Creep Wall	6,000 psi	0.40	4.(B), 4.(C), 4.(D), 4.(E)
	(24)	Quadguard Slab	5,000 psi	0.40	4.(B), 4.(C), 4.(E)
	(25)	All Others	6,000 psi	0.45	4.(B)
	(26)	Roof slab, Walls, and Curbs at Electrical Building	6,000 psi	0.40	4.(B), 4.(C), 4.(D) $\frac{21}{8}$
	*Refe	r to notes 4.(B) through 4.(F)	in this secti	on	<u> </u>

/1\

4.

	FED. ROAD DIST. NO.	STATE	FEDERAL AID PROJ. NO.	FISCAL YEAR	SHEET NO.	TOTAL SHEETS
Materials (Continued,	HAWAII	HAW.	ER-22(002)	2019	ADD 25	94

- B. Amine carboxylate corrosion inhibiting water-based admixture such as Cortec MCI 2005 NS or approved equal shall be added at a dosage of 24 ounces per cubic yard.
- C. Shrinkage reducing admixture such as Eclipse 4500 or Masterlife SRA 20 or approved equal shall be added at a dosage of 128 ounces per cubic yard or as recommended by the manufacturer.
- D. Alkali resistant structural glass fiber such as CEMFIL, ANTI-CRAK HP67/36 or approved equal shall be added to the concrete mix. The dosage rate shall be 15 lbs per cubic yard for CEMFIL or the equivalent amount of approved equal to achieve similar properties as the glass dosage. The fiber shall be added to the concrete as recommended by the manufacturer during the mixing process.
- E. An integral waterproofing admixture such as KIM HS or approved equal shall be added to the concrete mix. The dosage rate shall be 13.5 lbs per cubic yard.
- F. A 2 1/4" long macro synthetic fiber such as Forta Ferro or approved equal shall be added to the concrete mix. The dosage shall be 7.5 lbs per cubic yard or the equivalent amount of approved equal to achieve similar properties.
- G. Contractor is not limited to only adding admixtures listed on these notes. Other admixtures may be added upon approval of the Engineer.
- H. The maximum cementitious content for all concrete except for items 16 and 20 shall be 670 lbs of portland cement per cubic yard. The maximum cementitious content for Item 16 shall be 700 lbs of portland cement per cubic yard. The maximum cement content for Item 20 shall be 752 lbs of portland cement per cubic yard.
- I. The use of calcium chloride in any concrete is prohibited.
- J. All concrete exposed within 7 days of placement shall be cured using Sinak Lithium Cure 1000 or approved equal at a coverage rate of no, less than 400 sq. ft. per gallon.

11/15/19	11 Revised Note
10/04/19	8 Revised Note
9/27/19	7 Revised Note
5/24/19	1 Revised Notes
DATE	REVISION
	STATE OF HAWAII DEPARTMENT OF TRANSPORTATION HIGHWAYS DIVISION
<u>STRL</u>	ICTURAL GENERAL NOTES
LANDS	<u>PALI HIGHWAY</u> <u>SLIDE MITIGATION PROJECT</u> AP Proj. No. ER-22(002)
Scale: No	ne Date: May 6, 2019
SH	EET NO SO.2 OF 5 SHEETS
	ADD 25

- K. Non-shrink grout shall be a pre-mixed product consisting of non-staining, non-metallic aggregate cement, water reducing and plasticizing agents capable of developing a minimum compressive strength of 4000 psi in 3 days and 7000 psi in 28 days. The non-shrink grout shall contain at least 10 grams of migrating amine carboxylate corrosion inhibiting admixture per 0.4 to 0.5 cubic feet of no-shrink grout.
- Elastomeric waterproofing membrane shall be applied on the CIP topping. The tensile strength (ASTM D412) shall be at least 350 psi, the elongation (ASTM D412 at least 300% and the tensile bond adhesion (ASTM C297) at least 300 psi cohesive. All work including surface preparation, application and limitations shall be in accordance with the manufacturer's brochure. ·····
- M. Rock anchors and vertical ground anchors shall be all-thread rebar conforming to ASTM A615 Grade 75 and hot-dip galvanized in accordance with ASTM A767 Class 1. Any damage to corrosion protective coating on bars shall be repaired in accordance with manufacturer's recommendations or else bars shall not be used.
- N. Bearing plates, nuts, washers and couplers for ground anchors shall conform to the following:
 - (1) Bearing plates: ASTM A36
 - (2) Nuts: ASTM A563
 - (3) Washers: ASTM F436
 - (4) Couplers: ASTM A108
 - (5) All hardware shall be hot-dip galvanized in accordance with ASTM A123, A153, and F2329, respectively.
- 0. Grout for rock anchors and vertical ground anchors shall conform to "Section 681 - Grouted Anchor". In addition, grout mix shall be proportioned as follows:
 - (1) Use 94 lbs of type I/II cement, 4 gallons of water, and 3 to 6 lbs of Masterroc FLC 100 admixture or approved equal.
 - (2) Use 1 oz. of Amine Carboxvlate corrosion inhibiting water-based admixture such as Cortec MCI 2005 NS or approved equal per 94 lb bag of cement.
 - (3) Use Glenium 3030 or approved equal for workability as needed.
 - (4) Grout shall be stable (bleed less than 2%) per ASTM C940.
 - (5) Corrosion inhibitor and Masterroc shall be added to the mixing water before adding cement.

STRUCTURAL GENERAL NOTES:

Materials (Continued):

- (6) Temperature of grout shall not exceed 85[^]F at the end of the grouting hose coupling to fill tube.
- (7) Use 0.3 lbs \pm 0.1 lbs of VMA such at Walocel MW PFV admixture or approved equal per 94 lb bag of cement.
- P. Bonding agent shall be a three-component, preproportioned, water based epoxy modified portland cement bonding agent and anti-corrosion coating. Bond strength shall exceed 2,400 psi in accordance with ASTM C882.
- Q. Expanded Polystyrene (EPS) used as energy absorbing material shall have a maximum density of 1.80 lb/cf, a minimum elastic modulus of 730 psi, and a poissons ratio equal to exactly 0.05.
- R. A dark gray internal pigmenting shall be added to Item No.s 11, 18, 19, 21, and 22. A test sample shall be submitted to the Engineer for review and approval.
- S. Very Early Strength Latex Modified Concrete (VESLMC) shall consist of FasTrac 246 concrete, an added amine carboxylate corrosion inhibiting admixture, and a Ready-To-Use FasTrac Polymer so that when combined it produces a rapid-setting material capable of achieving 2,500 psi of compressive strength in 1.5-hours.
- T. Verv Early Strength Grout shall be FasTrac 246 mortar. Grout shall be of pourable consistency and shall be capable of developing 2,500 psi of compressive strength in 3 hours.
- 5. <u>Reinforcement:</u>
 - A. Unless otherwise noted, the clear covering measured from the surface of the concrete to the face of any reinforcing steel bars shall be as follows:
 - (1) Deck Topping
 - (a) Top bars = 2 1/2"
 - (2) For precast planks see Sheets S9.1 through S9.2.
 - (3) Stirrups and ties = 2"
 - (4) Drilled shafts = 4"
 - (5) Reinforcing in concrete cast against and permanently exposed to earth = 3".
 - (6) All others = 2"
 - B. Reinforcing steel shall conform to ASTM A615, Grade 60 deformed bars unless otherwise noted.
 - C. Minimum clear spacing between parallel bars shall be 1 1/2 times the maximum size of the coarse aggregate or 1 1/2 inches, whichever is greater, except when bundled.

5.

- noted.

- /1
- psi.

FED. ROAD DIST. NO.	STATE	FEDERAL AID PROJ. NO.	FISCAL YEAR	SHEET NO.	TOTAL SHEETS
HAWAII	HAW.	ER-22(002)	2019	ADD 26	94

Reinforcement (Continued):

D. Reinforcing bars shall be placed and installed in accordance with the CRSI Manual of Standard Practice and CRSI Placing Reinforcing Bars, unless otherwise

E. Reinforcing bars shall be securely tied at all intersections and lap splices except where the spacing of the intersections is less than 12 inches in each direction, in which case alternate intersections shall be tied.

F. Minimum lap splice length for steel reinforcing shall be 40 bar diameters or 2'-0", whichever is greater, unless otherwise noted. Increase lap length by multiplying the minimum lap splice length by 1.3 for bars having more than 12" of fresh concrete below bars.

G. Unless otherwise noted, reinforcing splices shall be staggered. Minimum distance between staggered lap splice shall be equal to the length required for the lap splice. Number of bars spliced at sections normal to axis of member shall not exceed 50 percent of the total main reinforcina in the member.

H. All dimensions relating to reinforcing bars are to centers of bars unless otherwise noted.

I. Stainless steel deformed reinforcing bars (as noted) shall conform to ASTM A955 Type 2205, with a minimum yield and ultimate strength of 65 ksi and 95 ksi respectively. Follow CRSI Engineering Technical Note ETN-M-2-12 for stainless steel rebar handling and storage.

J. Stainless steel shall not come into contact with dissimilar metals. Separate contact points using teflon isolation material or dielectric tape.

K. Glass Fiber Reinforced Polymer (GFRP) rebar ASTM D7957 shall have a minimum modulus of elasticity of 6,500,000

7/12/19	4 Revised Notes
5/24/19	1 Revised Notes
DATE	REVISION
	STATE OF HAWAII DEPARTMENT OF TRANSPORTATION HIGHWAYS DIVISION
<u>STRU</u>	ICTURAL GENERAL NOTES
LANDS F	<u>PALI HIGHWAY</u> <u>LIDE MITIGATION PROJECT</u> AP Proj. No. ER-22(002)
Scale: No	ne Date: May 6, 2019
SHI	EET No. SO.3 OF 5 SHEETS
	ADD 26

General Construction Notes:

6.

- A. Requirements for formwork within these general notes shall govern over the specifications and special provisions.
- B. Unless otherwise noted, all vertical dimensions are measured plumb.
- C. The Contractor shall verify all site conditions before commencing the work of excavation.
- D. Unless otherwise noted, all exposed concrete surfaces shall be chamfered 3/4"x3/4".
- E. Existing reinforcing shall not be damaged during demolition work, unless otherwise permitted.
- F. For concrete finish see standard specifications and special provisions.
- G. Construction joints may be relocated or additional ones added subject to the approval of the Engineer.
- H. Retaining walls shall meet the following requirements:
 - 1. Do not erect formwork for retaining wall on footing until minimum of 24 hours after concrete placement of footing.
 - 2. Do not remove formwork for the retaining wall until a minimum of 24 hours.
 - 3. Post-tension and grout the retaining wall after 48 hours and once the concrete has reached a minimum compressive strength of 3,000 psi.
 - 4. Retaining wall shall not be vertically loaded until reaching a minimum compressive strength of 4,000 psi and 120 hours has elapsed since placing concrete.
- I. Columns shall meet the following requirements:
 - 1. Do not erect formwork for transition zone on the drilled shaft until minimum of 24 hours after concrete placement of drilled shaft.
 - 2. Do not erect formwork for column on transition zone until minimum of 24 hours after concrete placement of transition zone.
 - 3. Do not remove formwork for the columns until a minimum of 24 hours.
 - 4. Do not erect formwork for cap beam on columns until reaching a minimum compressive strength of 4,000 psi and 72 hours has elapsed since placing concrete.

- 6. <u>General Construction Notes (Continued)</u>:
 - J. Cap beams shall meet the following requirements:
 - 1. Side forms for cap beams shall be removed after a minimum of 96 hours.
 - 2. Formwork for the soffit shall be removed only after reaching a minimum compressive strength of 4,000 psi and 120 hours as elapsed since placing concrete.
 - 3. Cap beams shall not be vertically loaded until reaching both a minimum compressive strength of 5,000 psi and 120 hours has elapsed since placing concrete.
 - K. Precast planks may be lifted and moved after reaching both a minimum compressive strength of 4,000 psi and 48 hours has elapsed since placing concrete.
 - L. Waterproofing over the CIP topping may be applied no sooner than 120 hours after the concrete has been placed when using a curing accelerator such as Vapor Shield or approved equal. Contractor shall follow manufacturer's recommendations during construction.

FED. ROAD DIST. NO.	STATE	FEDERAL AID PROJ. NO.	FISCAL YEAR	SHEET NO.	TOTAL SHEETS
HAWAII	HAW.	ER-22(002)	2019	ADD 27	94

5/24/19	1 Revised Notes		
DATE	REVISION		
	STATE OF HAWARI DEPARTMENT OF TRANSPORTATION HIGHWAYS DIVISION		
STRUCTURAL GENERAL NOTES			
LANDS	<u>PALI HIGHWAY</u> SLIDE MITIGATION PROJECT AP Proj. No. ER-22(002)		
Scale: No	one Date: May 6, 2019		
SH	EET No. SO.4 OF 5 SHEETS		
	ADD 27		

SYMBOLS AND ABBREVIATIONS

	¢ @	And At	Demo Det.	Demolish, Demolition Detail	H (H)	Height Hinge	P(e)	Effective or Workin Prestressing Force
	Ø #	Diameter Number, Pound	Dia. Dim.	Diameter Dimension	Horiz. HS	Horizontal High strength	PP Perf.	Precast Plank Perforated
			Dist. DO	Distance Ditto	HSS HECO	Hollow Structural Section Hawaiian Electric Company	PL PCC	Plate Portland Cement Co
	Abut.	Abutment	Dwls. Dn.	Dowels Down		·····	PC PCF	Point of Curvature Pounds per Cubic
	Abbr. Add.	Abbreviation Additional, Added	Dbl.	Double	IB, Inbnd.	Inbound	PSF	Pounds per Square
	A/t .	Alternate	DI	Drain Inlet, Ductile Iron	In.	Inch	PSI	Pounds per Square
	AB AC	Anchor Bolt Asphaltic Concrete	Dwg., Dwgs. DS	Drawing, Drawings Drilled Shaft	ID IF	Inside Diameter Inside Face	PLF PI	Pounds per Linear Point of Intersection
	AC Approx.	Approximate	05	Dimod Sharr	Int.	Interior	/ 1	of Tangents
	Az.	Azimuth		F ach	Inv.	Invert	PIVC	Point of Intersection
			EA, Ea., ea. EF	Each Each Face			PT	Vertical Curve Point of Tangency,
	Bk.	Back	EFH	Each Face Horizontal	Jt.	Joint	, ,	Post Tensioned
	Bal .	Balance	EFV	Each Face Vertical			Pt., Pts.	Point, Points
	₿ Bm .	Baseline Beam	EW EP	Each Way Edge of Pavement	К	Kips	PŔC PVC	Point of Reverse C Polyvinyl Chloride
	Bra., Bras.	Bearing, Bearings	EPS	Expanded Polystyrene	ĸ	Kİp Foot	Prestr.	Prestressed
	Brg., Brgs. BVC	Beginning of Vertical Curve	E,	East	KSF	Kips Per Square Foot	P/S	Prestressed Strand
	BMP Bot	Best Management Practices Between	Elec. EMH	Electrical Electrical Manhole	KSI KLF	Kips Per Square Inch Kips Per Linear Foot	PB	Pull Box
	Bet . BF	Both Faces, Back Face	El., Elev.	Elevation	NL/	Kips i ei Eineai i ooi		
	BW	Both Ways	Emb.	Embankment			Q	Flow Rate
	BFE Pot Pott P	Bottom of Footing Elevation Bottom	Embed. EVC	Embedded, Embedment End of Vertical Curve	L Ib., Ibs., LBS.	Length Pound, Pounds		
	Bot,, Bott., B Br.	Bridge	Eq.	Equal	Ltg. Std.	Lighting Standard	Rad., R	Radius
	Bit.	Bolt	Est.	Estimated	LĒ	Linear Feet/Foot	RF	Rear Face
			Exc. Excl.	Excavation Excluding	Lin. Ft. LS	Linear Feet/Foot Lump Sum	Rebar Ref.	Reinforcing Bar Reference
	Cant.	Cantilever	Exist., Ex.	Existing	Longit.	Longitudinal	Reinf.	Reinforced, Reinfor
	C .B. CIP	Catch Basin	Exp., (E)	Expansion	J	J		Reinforcement
	¢	Cast-in-Place Centerline	EJ Ext.	Expansion Joint Exterior			Req'd. Ret.	Required Retaining
	CG	Center of Gravity			M MH	Modified Manhole	ROW	Right of Way
	cgs	Center to Gravity of Strands			Max.	Maximum	Rdwy.	Roadway
	сс СІ .	Center to Center Class	FF	Far Face. Front Face	Mech.	Mechanical		
	Clr.	Clearance	F'c	Specified Strength	Min.	Minimum	Sch.	Schedule
	Col.	Column	<i>_</i> / ·	of Concrete	Misc. MPH	Miscellaneous Miles Per Hour	Sect.	Section
	Conc. Conn.	Concrete Connection	F'ci	Strength of Concrete at Time of Initial Prestress			SDMH Sht .	Sewer Drain Manho Sheet
	Const.	Construction	Ft.	Feet, Foot			SRA	Shrinkage Reducing
	CFCW	Continuous Flashing	Fig.	Figure	NF	Near Face	sı.	Slope
	CJ	Compound Waterproofing Control Joint	Fin. Gr. (F)	Finish Grade Fixed	N NIC	North Not in Contract	S Spc	South Spacing
	Const. Jt.	Construction Joint	FB	Flat Bar	No.	Number	Sprd.	Spread
	CLSM	Controlled Low Strength	Ftg.	Footing	NTS	Not to Scale	Spec.	Specification
-	Cont.	Material Continuous	FĂ	Force Account			SF SY	Square Feet Square Yard
	CF	Cubic Feet					SS. SSTL	Stainless Steel
	CY, Cu. Yd.	Cubic Yard	0		0/S	Offset	Std.	Standard
1	CSL	Crosshole Sonic Logging	Ga. Galv.	Gage, Gauge Galvanized	oc Opn'g	On Center Opening	Sta. Stagg.	Station Staggered
1			GFRP	Glass Fiber Reinforced Polymer	OB, Outbnd.	Outbound	Stiff.	Stiffener
1			Gr.	Grade	ОĎ	Outside Diameter		
			Grd. GRP	Ground Grouted Rubble Pavement				
1			·					

SURVEY PLC DRAWN BY __ TRACED BY __ DRSIGNED B

ORIGINAL PLAN NOTE BOOK

		FED. ROAD DIST. NO.	STATE	FEDERAL AID PROJ. NO.	FISCAL YEAR	SHEET NO.	TOTAL SHEETS			
		HAWAII	HAW.	ER-22(002)	2019	28	94			
		//////11	//////	LITELOOL	2010	20	57			
king	Stirr		Stirr							
rce	Str.	- 4	Straight Structure							
	Strue SE	CT.								
	Symn	n	Svm	r Elevation netrical						
Concrete	Jynni	1.	Jynnin							
ire	_		_							
ic Foot	Tan.		Tang							
are Foot	Temp).	Temporary							
are Inch ar Foot	_	Thk.		Thick Top						
ar roor ction	, T¢B	T T&R		and Bottom						
511011	TOD			Top of Deck						
ction of	TFE		Top of Footing Elevation							
	TOW			of Wall						
су,	Tot.		Total							
	Tran TS	SV.		sverse stural Tubic	~					
e Curvature	Typ.		Typic	ctural Tubin cal	y					
e	, <i>jp</i> .		' ypic							
ands		rgrd.	Unde	rground		_				
	UNO		Unies	ss Noted Oth	ierwise	9				
	Var.	Var.		es						
Vert.,										
	VC		Verti	cal Curve						
	W/C		Wate	r/Cement Ra	atio					
	w/		With							
forcing,	W		West							
	WWR			ed Wire Reil	nforcin	g				
	WW WP			Wall Point, Work	ina Pa	int				
	WS		Wate	r Surface	ing i c					
			n ai oi							
	Yr.		Year							
nhole										
ina Admixtura										
ing Admixture										

STATE OF HAWAII DEPARTMENT OF TRANSPORTATION HIGHWAYS DIVISION
SYMBOLS AND ABBREVIATIONS
<u>PALI HIGHWAY</u> LANDSLIDE MITIGATION PROJECT FAP Proj. No. ER-22(002)
Scale: None Date: May 6, 2019
 SHEET No. SO.5 OF 5 SHEETS
28