FORM C ATTACHMENT A-2

Tables and Calculations

TABLE 1 – DISCHARGE POINT INFORMATION AND DISCHARGE QUANTITY

Discharge	Location	Latitude	Longitude	Class	С	I	Α	Q
Point						(in/hr	(Acres)	(cfs)
Outfall 1	Stream Intermittent	N22.0019600D	W159.3744707D	2	0.85	5.52	0.36	1.69
Outfall 2	Stream Intermittent	N22.0033336D	W159.3747882D	2	0.85	5.52	0.34	1.6
Outfall 3	Stream Intermittent	N22.0049466D	W159.3751574D	2	0.85	5.52	1.38	6.47
Outfall 4	Stream Perennial	N22.0101974D	W159.3824752D	2	0.85	5.52	0.74	3.47

Total Discharge (Q total) = 13.23 cfs

Runoff Calculations

Q = CIA

where:

Q = quantity of storm water runoff in cu. ft/sec.

C = runoff coefficient

A = disturbed area in acres

Tc = Rainfall intensity for the duration equal to time of concentration

= 10 min (minimum)

For this project:

C = 0.87 for paved areas

C = 0.80 for unpaved shoulders

(Using composite drainage areas, a weighted value runoff coefficient shall be computed. The weighted value of runoff coefficient for this project, C = 0.85)

I = 5.52 (see calculations below)

A = varies (see table below)

 $I = I \times Cf$

i = 2.4 (intensity of a 2-yr 1-hr rainfall)

Cf = 2.30 (correction factor)

 $I = 2.40 \times 2.30 = 5.52$

Disturbed Area: (Includes Staging/Storage Areas, see note below)

$$I-1 = 0.18 \text{ Acs}$$

$$I-2 = 0.17 \text{ Acs}$$

$$I-3 = 0.73 \text{ Acs}$$

$$I-4 = 0.26 \text{ Acs}$$

$$S-1 = 0.18 Acs$$

$$S-2 = 0.17 Acs$$

$$S-3 = 0.65 Acs$$

$$S-4 = 0.48 \text{ Acs}$$

NOTE: Since this is a linear project, there will be several locations of Staging/Storage Areas. Probable Storage/Staging Areas will be located along the unpaved shoulder within the state right of way.

Discharge (Q) to Outfall 1 (Aliomanu Stream)

$$Q_{I-1} = (0.85) \times (5.52 \text{ in/hr}) \times (0.18 \text{ Acs})$$

$$Q_{1-1} = 0.84 \text{ cfs}$$

Discharge (Q) to Outfall 1 (Aliomanu Stream)

$$Q_{1-2} = (0.85) \times (5.52 \text{ in/hr}) \times (0.17 \text{ Acs})$$

$$Q_{1-2} = 0.80 \text{ cfs}$$

Discharge (Q) to Outfall 1 (Aliomanu Stream)

$$Q_{1-3} = (0.85) \times (5.52 \text{ in/hr}) \times (0.73 \text{ Acs})$$

$$Q_{1-3} = 3.43 \text{ cfs}$$

Discharge (Q) to Outfall 2 (Anahola Stream)

$$Q_{1-4} = (0.85) \times (5.52 \text{ in/hr}) \times (0.26 \text{ Acs})$$

$$Q_{1-4} = 1.22 \text{ cfs}$$

Discharge (Q) to Outfall 1 (Aliomanu Stream)

$$Q_{S-1} = (0.85) \times (5.52 \text{ in/hr}) \times (0.18 \text{ Acs})$$

$$Q_{S-1} = 0.84 \text{ cfs}$$

Discharge (Q) to Outfall 2 (Anahola Stream)

$$Q_{S-2} = (0.85) \times (5.52 \text{ in/hr}) \times (0.17 \text{ Acs})$$

 $Q_{S-2} = 0.80 \text{ cfs}$

Discharge (Q) to Outfall 3 (Anahola Stream)

$$Q_{S-3} = (0.85) \times (5.52 \text{ in/hr}) \times (0.65 \text{ Acs})$$

 $Q_{S-3} = 3.05 \text{ cfs}$

Discharge (Q) to Outfall 3 (Anahola Stream)

$$Q_{S-4} = (0.85) \times (5.52 \text{ in/hr}) \times (0.48 \text{ Acs})$$

 $Q_{S-4} = 2.25 \text{ cfs}$