FORM C ATTACHMENT A-2 Tables and Calculations

TABLE 1 - DISCHARGE POINT INFORMATION AND DISCHARGE QUANTITY

Discharge Point	Location	Latitude	Longitude	Class	С	l (in/hr	A (Acres)	Q (cfs)
Outfall 1	Aliomanu Stream	N22.159902D	W159.317196D	2	0.85	5.52	6.29	29.51
Outfall 2	Anahola Stream	N22.142395D	W159.313406D	2	0.85	5.52	3.47	16.28
Outfall 3	Anohola Stream	N22.145349D	W159.313558D	2	0.85	5.52	1.05	4.93

Total Discharge (Q_{total}) = 50.72 cfs

Runoff Calculations

Q = CIA

where:

Q = quantity of storm water runoff in cu. ft/sec.

C = runoff coefficient

A = disturbed area in acres

Tc = Rainfall intensity for the duration equal to time of concentration

= 10 min (minimum)

For this project:

C = 0.87 for paved areas

C = 0.80 for unpaved shoulders

(Using composite drainage areas, a weighted value runoff coefficient shall be computed. The weighted value of runoff coefficient for this project, C = 0.85)

I = 5.52 (see calculations below)

A = varies (see table below)

$$I = I \times Cf$$

i = 2.4 (intensity of a 2-yr 1-hr rainfall)

Cf = 2.30 (correction factor)

 $I = 2.40 \times 2.30 = 5.52$

Disturbed Area: (Includes Staging/Storage Areas, see note below)

$$I-1 = 0.17 \text{ Acs}$$

$$1-2 = 0.58 \text{ Acs}$$

$$I-3 = 0.34 \text{ Acs}$$

$$I-4 = 1.84 \text{ Acs}$$

$$S-1 = 5.20 Acs$$

$$S-2 = 1.63 Acs$$

$$S-3 = 1.05 Acs$$

NOTE: Since this is a linear project, there will be several locations of Staging/Storage Areas. Probable Storage/Staging Areas will be located along the unpaved shoulder within the state right of way.

Discharge (Q) to Outfall 1 (Aliomanu Stream)

$$Q_{l-1} = (0.85) \times (5.52 \text{ in/hr}) \times (0.17 \text{ Acs})$$

$$Q_{1-1} = 0.80 \text{ cfs}$$

Discharge (Q) to Outfall 1 (Aliomanu Stream)

$$Q_{1-2} = (0.85) \times (5.52 \text{ in/hr}) \times (0.58 \text{ Acs})$$

$$Q_{1-2} = 2.72 \text{ cfs}$$

Discharge (Q) to Outfall 1 (Aliomanu Stream)

$$Q_{1-3} = (0.85) \times (5.52 \text{ in/hr}) \times (0.34 \text{ Acs})$$

$$Q_{1-3} = 1.59 \text{ cfs}$$

Discharge (Q) to Outfall 2 (Anahola Stream)

$$Q_{1-4} = (0.85) \times (5.52 \text{ in/hr}) \times (1.84 \text{ Acs})$$

$$Q_{1-4} = 8.63 \text{ cfs}$$

Discharge (Q) to Outfall 1 (Aliomanu Stream)

$$Q_{S-1} = (0.85) \times (5.52 \text{ in/hr}) \times (5.20 \text{ Acs})$$

$$Q_{S-1} = 24.39 \text{ cfs}$$

Discharge (Q) to Outfall 2 (Anahola Stream)

$$Q_{S-2} = (0.85) \times (5.52 \text{ in/hr}) \times (1.63 \text{ Acs})$$

 $Q_{S-2} = 7.65 \text{ cfs}$

Discharge (Q) to Outfall 3 (Anahola Stream)

$$Q_{S-3} = (0.85) x (5.52 in/hr) x (1.05 Acs)$$

 $Q_{S-3} = 4.94 cfs$