SECTION 02610 - CONCRETE FOR MISCELLANEOUS STRUCTURES

<u> PART 1 – GENERAL</u>

1.1 <u>RELATED DOCUMENTS</u>

- A. The General Provision of the contract, including the General Provisions for Construction Projects (2016), Special Provisions, and General Requirements of the Specifications, apply to the work specified in this section.
- B. This Section shall be in accordance with FAA Specification Item P-610 Concrete For Miscellaneous Structures, as included as an attachment to this Section.

1.2 <u>SUMMARY</u>

- A. The Work under this Section consists of plain and/or reinforced concrete for airfield signage and light can bases, NAVAID foundations, drainage structures, retaining walls, and other miscellaneous airfield concrete structures other than airfield pavements prepared and constructed as shown on the Plans and as specified herein.
- B. The Work under this Section also consists of plain and/or reinforced High Early Strength (HES) cement concrete, prepared and constructed in accordance with these specifications, where the conditions required for early opening of runway, taxiway, and other construction areas for traffic movement, and of the form and dimensions shown on the plans.

1.4 <u>REFERENCES</u>

- A. FAA Specification Item P-610 Concrete For Miscellaneous Structures as modified herein.
- B. Section 02751, Manholes, Catch Basins, Inlets and Inspection Holes.
- C. Section 02752, Concrete Culverts, Headwalls, and Miscellaneous Drainage Structures.
- D. Section 02820, Retaining Walls.
- E. Unless stated otherwise, the Work of this Section shall be in accordance with the Concrete Reinforcing Steel Institute (CRSI) "Manual of Standard Practice".
- F. For anchor bolts, reference American Institute of Steel Construction (AISC) Code of Standard Practice for Steel Buildings and Bridges.

1.5 <u>SUBMITTALS</u>

Prior to commencing the Work of this Section, the Contractor shall submit the following information according to Section 01300, Submittals.

- A. Structural Portland Cement Concrete mix design and test results for each batch plant in conformance with FAA Specification Item P-610, with test reports. Submit alternate design mixtures when characteristics of materials, weather, test results, or other circumstances warrant adjustments. The Contractor shall submit all copies of test results to the Engineer for review. These shall include retests for items that failed initial testing.
- B. Aggregates and materials used in the mix designs, including test reports, product samples, and as required by the Engineer.
- C. Steel reinforcement and dowel bars.

1.6 <u>DEFECTIVE WORK.</u>

A. Any work performed under this section which fails to meet the requirements stated herein will be considered defective and shall be removed and replaced at the Contractor's expense. Additional testing methods will not be allowed. Destructive testing of the field placed concrete will not be allowed.

PART 2 – PRODUCTS

2.1 <u>STRUCTURAL CONCRETE</u>

Concrete for Miscellaneous Structures shall conform to FAA Specification Item P-610, and as modified herein.

2.2 <u>HIGH EARLY STRENGTH CONCRETE</u>

Cement for High Early Strength (HES) cement concrete shall be one of the following:

- A. Portland cement conforming to the requirements of ASTM C150 Type III.
- B. Use of proprietary rapid-setting cementitious grout meeting the requirements of ASTM C1107.
- C. Grout shall be rapid-hardening, non-shrink grout.
- D. A combination of the above.

2.3 <u>STEEL REINFORCEMENT</u>

Reinforcing Bars shall be ASTM A 184 or A 704 bar nuts.

2.4 <u>REINFORCEMENT ACCESSORIES</u>

Bar supports, including bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded wire reinforcement in place. Manufacture bar supports from steel wire, plastic, or precast concrete shall be, as according to CRSI's Manual of Standard Practice, or greater compressive strength than concrete.

2.5 FABRICATING REINFORCEMENT

The Contractor shall ensure that steel reinforcement is fabricated as according to CRSI's Manual of Standard Practice.

PART 3 – EXECUTION

3.1 <u>CONCRETE PLACEMENT</u>

The Contractor shall mix and place poured concrete in accordance with FAA Specification Item P-610, as modified herein, and as shown on the Plans.

Where High Early Strength (HES) concrete is called for in the Drawings or Specifications, the minimum compressive strength shall be 3,000 psi prior to the opening of the work to traffic within the active runway and taxiway areas.

3.2 <u>EMBEDDED ITEMS</u>

The Contractor shall:

- A. Place and secure anchorage devices and other embedded items required for adjoining work that is attached to or supported by cast-in-place concrete. Use setting drawings, templates, diagrams, instructions and directions furnished with items to be embedded.
- B. Install anchor bolts, accurately located, to elevations required, and complying with tolerances in Section 7.5 of AISC's Code of Standard Practice for Steel Buildings and Bridges.

3.3 <u>STEEL REINFORCEMENT</u>

The Contractor shall comply with CRSI's Manual of Standard Practice for placing reinforcement. In particular, the Contractor shall:

A. Clean reinforcement of loose rust and mill scale, earth, ice, and other foreign materials that would reduce bond to concrete.

- B. Accurately position, support, and secure reinforcement against displacement. Locate and support reinforcement with bar supports to maintain minimum concrete cover. Do not tack weld crossing reinforcement bars.
- C. Set wire ties with ends directed into concrete, not toward exposed concrete surfaces.

PART 4 – MEASUREMENT AND PAYMENT

5.1 <u>METHOD OF MEASUREMENT AND PAYMENT</u>

A. Method of measurement and basis for payment shall be in accordance with FAA Specification Item P-610, paragraph 610-5.1.

PART 5 – ATTACHMENTS

- 5.1 FAA SPECIFICATIONS
 - A. P-610, Concrete for Miscellaneous Structures.

END OF SECTION 02610

ITEM P-610 CONCRETE FOR MISCELLANEOUS STRUCTURES

DESCRIPTION

610-1.1 This item shall consist of concrete and reinforcement, as shown on the plans, prepared and constructed in accordance with these specifications. This specification shall be used for all concrete other than airfield pavement which are cast-in-place.

MATERIALS

610-2.1 General. Only approved materials, conforming to the requirements of these specifications, shall be used in the work. Materials may be subject to inspection and tests at any time during their preparation or use. The source of all materials shall be approved by the Resident Project Representative (RPR) before delivery or use in the work. Representative preliminary samples of the materials shall be submitted by the Contractor, when required, for examination and test. Materials shall be stored and handled to ensure preservation of their quality and fitness for use and shall be located to facilitate prompt inspection. All equipment for handling and transporting materials and concrete must be clean before any material or concrete is placed in them.

The use of pit-run aggregates shall not be permitted unless the pit-run aggregate has been screened and washed, and all fine and coarse aggregates stored separately and kept clean. The mixing of different aggregates from different sources in one storage stockpile or alternating batches of different aggregates shall not be permitted.

a. Reactivity. Fine aggregate and coarse aggregates to be used in all concrete shall have been tested separately within six months of the project in accordance with ASTM C1260. Test results shall be submitted to the RPR. The aggregate shall be considered innocuous if the expansion of test specimens, tested in accordance with ASTM C1260, does not exceed 0.08% at 14 days (16 days from casting). If the expansion either or both test specimen is greater than 0.08% at 14 days, but less than 0.20%, a minimum of 25% of Type F fly ash, or between 40% and 55% of slag cement shall be used in the concrete mix.

If the expansion is greater than 0.20%, the aggregates shall not be used, and test results for other aggregates must be submitted for evaluation; or aggregates that meet P-501 reactivity test requirements may be utilized.

610-2.2 Coarse aggregate. The coarse aggregate for concrete shall meet the requirements of ASTM C33 and the requirements of Table 4, Class Designation 5S; and the grading requirements shown below, as required for the project.

Maximum Aggregate Size	ASTM C33, Table 3 Grading Requirements (Size No.)
1 1/2 inch (37.5 mm)	467 or 4 and 67
1 inch (25 mm)	57
³ / ₄ inch (19 mm)	67
¹ / ₂ inch (12.5 mm)	7

Coarse Aggregate Grading Requirements

610-2.2.1 Coarse Aggregate susceptibility to durability (D) cracking.

Coarse aggregate may only be accepted from sources that have a 20-year service history for the same gradation to be supplied with no history of D-Cracking. Aggregates that do not have a 20-year record of service free from major repairs (less than 5% of slabs replaced) in similar conditions without D-cracking shall not be used unless the material currently being produced has a durability factor greater than or equal to 95 per ASTM C666. The Contractor shall submit a current certification and test results to verify the aggregate acceptability. Test results will only be accepted from a State Department of Transportation (DOT) materials laboratory or an accredited laboratory. Certification and test results which are not dated or which are over one (1) year old or which are for different gradations will not be accepted.

610-2.3 Fine aggregate. The fine aggregate for concrete shall meet all fine aggregate requirements of ASTM C33.

610-2.4 Cement. Cement shall conform to the requirements of ASTM C150 Type I or II.

610-2.5 Cementitious materials.

a. Fly ash. Fly ash shall meet the requirements of ASTM C618, with the exception of loss of ignition, where the maximum shall be less than 6%. Fly ash shall have a Calcium Oxide (CaO) content of less than 15% and a total available alkali content less than 3% per ASTM C311. Fly ash produced in furnace operations using liming materials or soda ash (sodium carbonate) as an additive shall not be acceptable. The Contractor shall furnish the previous three most recent, consecutive ASTM C618 reports for each source of fly ash proposed in the concrete mix, and shall furnish each additional report as they become available during the project. The reports can be used for acceptance or the material may be tested independently by the RPR.

b. Slag cement (ground granulated blast furnace (GGBF)). Slag cement shall conform to ASTM C989, Grade 100 or Grade 120. Slag cement shall be used only at a rate between 25% and 55% of the total cementitious material by mass.

610-2.6 Water. Water used in mixing or curing shall be from potable water sources. Other sources shall be tested in accordance with ASTM C1602 prior to use.

610-2.7 Admixtures. The Contractor shall submit certificates indicating that the material to be furnished meets all of the requirements indicated below. In addition, the RPR may require the Contractor to submit complete test data from an approved laboratory showing that the material to be furnished meets all of the requirements of the cited specifications. Subsequent tests may be

made of samples taken by the RPR from the supply of the material being furnished or proposed for use on the work to determine whether the admixture is uniform in quality with that approved.

a. Air-entraining admixtures. Air-entraining admixtures shall meet the requirements of ASTM C260 and shall consistently entrain the air content in the specified ranges under field conditions. The air-entrainment agent and any water reducer admixture shall be compatible.

b. Water-reducing admixtures. Water-reducing admixture shall meet the requirements of ASTM C494, Type A, B, or D. ASTM C494, Type F and G high range water reducing admixtures and ASTM C1017 flowable admixtures shall not be used.

c. Other chemical admixtures. The use of set retarding, and set-accelerating admixtures shall be approved by the RPR. Retarding shall meet the requirements of ASTM C494, Type A, B, or D and set-accelerating shall meet the requirements of ASTM C494, Type C. Calcium chloride and admixtures containing calcium chloride shall not be used.

610-2.8 Premolded joint material. Premolded joint material for expansion joints shall meet the requirements of ASTM D1751.

610-2.9 Joint filler. The filler for joints shall meet the requirements of Item P-605, unless otherwise specified.

610-2.10 Steel reinforcement. Reinforcing shall consist of Bar Mats conforming to the requirements of ASTM A184 or ASTM A704.

610-2.11 Materials for curing concrete. Curing materials shall conform to White-pigmented Liquid Membrane-Forming Compound, Type 2, Class B per ASTM C309.

CONSTRUCTION METHODS

610-3.1 General. The Contractor shall furnish all labor, materials, and services necessary for, and incidental to, the completion of all work as shown on the drawings and specified here. All machinery and equipment used by the Contractor on the work, shall be of sufficient size to meet the requirements of the work. All work shall be subject to the inspection and approval of the RPR.

610-3.2 Concrete Mixture. Unless otherwise notes on the Plans, the concrete shall develop a compressive strength of 4,000 psi in 28 days as determined by test cylinders made in accordance with ASTM C31 and tested in accordance with ASTM C39. The concrete shall contain not less than 470 pounds of cementitious material per cubic yard (280 kg per cubic meter). The water cementitious ratio shall not exceed 0.45 by weight. The air content of the concrete shall be 5% +/- 1.2% as determined by ASTM C231 and shall have a slump of not more than 4 inches (100 mm) as determined by ASTM C143.

The concrete for the retaining walls shall develop a compressive strength of 5,000 psi in 28 days as determined by test cylinders made in accordance with ASTM C31 and tested in accordance with ASTM C39.

610-3.3 Mixing. Concrete may be mixed at the construction site, at a central point, or wholly or in part in truck mixers. The concrete shall be mixed and delivered in accordance with the requirements of ASTM C94 or ASTM C685.

The concrete shall be mixed only in quantities required for immediate use. Concrete shall not be mixed while the air temperature is below $40^{\circ}F(4^{\circ}C)$ without the RPRs approval. If approval is granted for mixing under such conditions, aggregates or water, or both, shall be heated and the concrete shall be placed at a temperature not less than $50^{\circ}F(10^{\circ}C)$ nor more than $100^{\circ}F(38^{\circ}C)$. The Contractor shall be held responsible for any defective work, resulting from freezing or injury in any manner during placing and curing, and shall replace such work at his expense.

After leaving the concrete plant, retempering of concrete by adding water or any other material is not permitted.

The rate of delivery of concrete to the job shall be sufficient to allow uninterrupted placement of the concrete.

610-3.4 Forms. Concrete shall not be placed until all the forms and reinforcements have been inspected and approved by the RPR. Forms shall be of suitable material and shall be of the type, size, shape, quality, and strength to build the structure as shown on the plans. The forms shall be true to line and grade and shall be mortar-tight and sufficiently rigid to prevent displacement and sagging between supports. The surfaces of forms shall be smooth and free from irregularities, dents, sags, and holes. The Contractor shall be responsible for their adequacy.

The internal form ties shall be arranged so no metal will show in the concrete surface or discolor the surface when exposed to weathering when the forms are removed. All forms shall be wetted with water or with a non-staining mineral oil, which shall be applied immediately before the concrete is placed. Forms shall be constructed so they can be removed without injuring the concrete or concrete surface.

610-3.5 Placing reinforcement. All reinforcement shall be accurately placed, as shown on the plans, and shall be firmly held in position during concrete placement. Bars shall be fastened together at intersections. The reinforcement shall be supported by approved metal chairs. Shop drawings, lists, and bending details shall be supplied by the Contractor when required.

610-3.6 Embedded items. Before placing concrete, all embedded items shall be firmly and securely fastened in place as indicated. All embedded items shall be clean and free from coating, rust, scale, oil, or any foreign matter. The concrete shall be spaded and consolidated around and against embedded items. The embedding of wood shall not be allowed.

610-3.7 Concrete Consistency. The Contractor shall monitor the consistency of the concrete delivered to the project site; collect each batch ticket; check temperature; and perform slump tests on each truck at the project site in accordance with ASTM C143.

610-3.8 Placing concrete. All concrete shall be placed during daylight hours, unless otherwise approved. The concrete shall not be placed until the depth and condition of foundations, the adequacy of forms and falsework, and the placing of the steel reinforcing have been approved by the RPR. Concrete shall be placed as soon as practical after mixing, but in no case later than one (1) hour after water has been added to the mix. The method and manner of placing shall avoid segregation and displacement of the reinforcement. Troughs, pipes, and chutes shall be used as an aid in placing concrete when necessary. The concrete shall not be dropped from a height of more than 5 feet (1.5 m). Concrete shall be deposited as nearly as practical in its final position to avoid segregation. Concrete shall be placed on clean, damp surfaces, free from running water, or on a properly consolidated soil foundation.

610-3.9 Vibration. Vibration shall follow the guidelines in American Concrete Institute (ACI) Committee 309R, Guide for Consolidation of Concrete.

610-3.10 Joints. Joints shall be constructed as indicated on the plans.

610-3.11 Finishing. All exposed concrete surfaces shall be true, smooth, and free from open or rough areas, depressions, or projections. All concrete horizontal plane surfaces shall be brought flush to the proper elevation with the finished top surface struck-off with a straightedge and floated.

610-3.12 Curing and protection. All concrete shall be properly cured in accordance with the recommendations in American Concrete Institute (ACI) 308R, Guide to External Curing of Concrete. The concrete shall be protected from damage until project acceptance.

610-3.13 Cold weather placing. When concrete is placed at temperatures below 40°F (4°C), follow the cold weather concreting recommendations found in ACI 306R, Cold Weather Concreting.

610-3.14 Hot weather placing. When concrete is placed in hot weather greater than 85°F (30 °C), follow the hot weather concreting recommendations found in ACI 305R, Hot Weather Concreting.

QUALITY ASSURANCE (QA)

610-4.1 Quality Assurance sampling and testing. Concrete for each day's placement will be accepted on the basis of the compressive strength specified in paragraph 610-3.2. The RPR will sample the concrete in accordance with ASTM C172; test the slump in accordance with ASTM C143; test air content in accordance with ASTM C231 make and cure compressive strength specimens in accordance with ASTM C31; and test in accordance with ASTM C39. The QA testing agency will meet the requirements of ASTM C1077.

The Contractor shall provide adequate facilities for the initial curing of cylinders.

610-4.2 Defective work. Any defective work that cannot be satisfactorily repaired as determined by the RPR, shall be removed and replaced at the Contractor's expense. Defective work includes, but is not limited to, not achieving the minimum specified strength at 28-days using the procedures of ASTM C31 and ASTM C39, uneven dimensions, honeycombing and other voids on the surface or edges of the concrete.

METHOD OF MEASUREMENT AND BASIS OF PAYMENT

610-5.1 Work under this section will not be measured nor paid for separately, but shall be considered incidental to and included in the bid prices for the various items of work in this project.

REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM International (ASTM)

ASTM A184

Standard Specification for Welded Deformed Steel Bar Mats for Concrete Reinforcement

ASTM A615	Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement
ASTM A704	Standard Specification for Welded Steel Plain Bar or Rod Mats for Concrete Reinforcement
ASTM A706	Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement
ASTM A775	Standard Specification for Epoxy-Coated Steel Reinforcing Bars
ASTM A884	Standard Specification for Epoxy-Coated Steel Wire and Welded Wire Reinforcement
ASTM A934	Standard Specification for Epoxy-Coated Prefabricated Steel Reinforcing Bars
ASTM A1064	Standard Specification for Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete
ASTM C31	Standard Practice for Making and Curing Concrete Test Specimens in the Field
ASTM C33	Standard Specification for Concrete Aggregates
ASTM C39	Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens
ASTM C94	Standard Specification for Ready-Mixed Concrete
ASTM C136	Standard Test Method for Sieve or Screen Analysis of Fine and Coarse Aggregates
ASTM C114	Standard Test Methods for Chemical Analysis of Hydraulic Cement
ASTM C136	Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates
ASTM C143	Standard Test Method for Slump of Hydraulic-Cement Concrete
ASTM C150	Standard Specification for Portland Cement
ASTM C171	Standard Specification for Sheet Materials for Curing Concrete
ASTM C172	Standard Practice for Sampling Freshly Mixed Concrete
ASTM C231	Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method
ASTM C260	Standard Specification for Air-Entraining Admixtures for Concrete
ASTM C309	Standard Specification for Liquid Membrane-Forming Compounds for Curing Concrete
ASTM C311	Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete
ASTM C494	Standard Specification for Chemical Admixtures for Concrete

ASTM C618	Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete
ASTM C666	Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing
ASTM C685	Standard Specification for Concrete Made by Volumetric Batching and Continuous Mixing
ASTM C989	Standard Specification for Slag Cement for Use in Concrete and Mortars
ASTM C1017	Standard Specification for Chemical Admixtures for Use in Producing Flowing Concrete
ASTM C1077	Standard Practice for Agencies Testing Concrete and Concrete Aggregates for Use in Construction and Criteria for Testing Agency Evaluation
ASTM C1157	Standard Performance Specification for Hydraulic Cement
ASTM C1260	Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method)
ASTM C1365	Standard Test Method for Determination of the Proportion of Phases in Portland Cement and Portland-Cement Clinker Using X-Ray Powder Diffraction Analysis
ASTM C1602	Standard Specification for Mixing Water Used in the Production of Hydraulic Cement Concrete
ASTM D1751	Standard Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Nonextruding and Resilient Asphalt Types)
ASTM D1752	Standard Specification for Preformed Sponge Rubber Cork and Recycled PVC Expansion Joint Fillers for Concrete Paving and Structural Construction
~ · · / ·	

American Concrete Institute (ACI)

ACI 305R	Hot Weather Concreting
ACI 306R	Cold Weather Concreting
ACI 308R	Guide to External Curing of Concrete
ACI 309R	Guide for Consolidation of Concrete

END OF ITEM P-610

END OF SECTION 02610