Project: Keaau-Pahoa Road Improvements - Route 130 (Shower Drive to Ainaloa Boulevard) (Alternative #1)

Pavement Design

Reference: Pavement Design Manual, State of Hawaii, Department of Transportation, dated Revised May 1995, revised March 2002.

Assumptions:		AOD	
Pavement type		ACP	-
Design life		50	years -
Directions of traff	ic	2	enter 1 for 1-way or 2 for 2-way traffic
Directional distrib	oution	75	<u> </u>
ADT (yr 2018)		28300	two direction traffic
ADT (yr 2068)		55800	two direction traffic
Average ADT		42050	two direction traffic (calculated or direct input value)
T24		3.5	<u></u> %
No. of lanes in o	ne direction	2	_
Percent of 2-axle	trucks	63.03	%
Percent of 3-axle	trucks	16.33	<u></u> %
Percent of 4-axle	trucks	11.22	<u></u> %
Percent of 5-axle	trucks	7.54	%
Percent of 6-axle	trucks	1.88	%
Abbreviation for b	oase material	ACB	[AB, ACB, ATPB, UPB, ###, or none
Name of base if r	not AB, etc.	n/a	[enter name if abbreviation for base material is ###, otherwise n/a]
Gf of base, if not	AB, etc.	n/a	[enter gravel factor if base is not AB, ACB, ATPB, or UPB, otherwise n/a]
R-value of base,	if not AB, etc.	n/a	[enter R-value if base is not AB, ACB, ATPB, or UPB, otherwise n/a]
GE safety factor,	if not AB, etc.	n/a	[enter GE safety factor if base is not AB, ACB, ATPB, or UPB, otherwise n/a]
Abbreviation for s	subbase material	none	[ASB,(material other than ASB, see next entry)] or none
Name of subbase	e if not ASB	n/a	[enter name if abbreviation for subbase material is, otherwise n/a]
Gf of subbase, if	not ASB	n/a	[enter gravel factor if subbase is not ASB, otherwise n/a]
R-value of subba	se, if not ASB	n/a	[enter R-value if subbase is not ASB, otherwise n/a]
Subgrade materi	al	SG	_
Name of subgrad	le	gravel	[enter name]
R-value of subgra	ade	55	[enter R-value]

Given Design Lane Factors (DLF)

Number of lanes in

one direction	DLF
1	1
2	1
3	0.8
4	0.75

Given ESALC, constants for equivalent 18 kip single axle load (Section 3.2.2.1 from reference)

one direction

No. of truck axles	constants
2-axle trucks	65
3-axle trucks	525
4-axle trucks	1,162
5-axle trucks	1,462
6-axle trucks	968

Given gravel factor and R-value for subbases and bases (Table 1-A from reference)

			Gravel		
			Factor		
Abbrev.	Desc.		Gf	R-value	_
AB	Aggregate base		1.1	80	
ACB	Asph. conc. base		*	90	* 0.95 x Gf for ACP
ATPB	Asphalt. treated permeable base		1.4	60	
UPB	Untreated permeable base		1.1	55	
ASB	Aggregate subbase		1.0	60	
###	ACB		n/a	n/a	
	none	subbase	n/a	n/a	
SG	gravel	subgrade		55	
-	no base				
	no subbase				
ACP	Asphaltic concrete pavement				

Given GE, gravel equivalent safety factors (Table 3-A from reference)

Base	GE increase	
Type	(ft)	Add to
ACB	0.24	ACP
ATPB	0.24	ACP
AB	0.2	ACP
UPB	0.2	ACP
none	0.1	ACP

Calculations:

1. Determine total ESAL, equivalent 18 kip single axle load [ADTT x ESALC x design life, for all trucks]

			design life (yrs)			ESALC		subtotal	
ESAL for 2-axle trucks:	63.03369663	Х	1471.75	Х	50	х	65	=	3,015,020
ESAL for 3-axle trucks:	16.32836716	Х	1471.75	Х	50	Х	525	=	6,308,210
ESAL for 4-axle trucks:	11.21887811	Х	1471.75	Х	50	Х	1,162	=	9,593,114
ESAL for 5-axle trucks:	7.539246075	Х	1471.75	Х	50	Х	1,462	=	8,111,092
ESAL for 6-axle trucks:	1.879812019	Х	1471.75	Х	50	Х	968	=	1,339,041
Total ESAL for all vehicles									28,366,477

2. Determine total design ESAL for all vehicles [Total ESAL for all vehicles x DLF x Directional Distribution]

Total ESAL: 28,366,477 x 1 x 0.75 = 21,274,857

3. Determine TI, traffic index [9 x ((total ESAL/1000000)^0.119)]

TI 12.95
TI (rounded to nearest 0.5) 13

4. Determine asphalt thickness

a. Determine R-value of material to be covered

Abbreviation of material to be covered ACB

Description of material to be covered Asph. conc. base

R-value, from Table 1-A 90

b. Determine GE, gravel equivalent factor [0.0032 x TI x (100-R)] (Equation 3.1 from reference)

GE, w/o safety factor 0.416

Add GE safety factor, from Table 3-A 0.240

GE with safety factor 0.656

c. Determine assumed Gf of pavement material, (acp)

assume Tacp = 4 inches assume Tacb = 8 inches

Gf (acp) = 1.941

d. Determine Tacp (GEacp/Gfacp) and compare to assumed Tacp

Tacp = 4.055 inches

Use Tacp 4.0 inches (rounded up to the nearest 0.5 inch)
(Minimum thickness should be 2.5" for AC layer)

e. Determine GE of Final Tacp (Tacp x Gfacp)

Gf for Final Tacp 1.941
GE of Final Tacp 0.647
GE of Final Tacp less GE safety factor 0.407

5. Determine base thickness

a. Determine R-value of material to be covered

Abbreviation of material to be covered SG

Description of material to be covered gravel

R-value, from Table 1-A or as assumed 55

b. Determine GE, gravel equivalent factor, GE=(0.0032 x TI x (100-R))

GE, w/o safety factor 1.872
Less GE of Tacp (Tacp/Gfacp) -0.407
Adjustment for GE safety factor included in Tacp -0.240
GE less GE of Tacp and safety factor 1.225

c. Determine Gf of base material, from Table 1-A 1.844

d. Calculate Tbase (GEbase/Gfbase) 0.664 feet or 8 inches

Use Tbase 8.0 inches (rounded up to the nearest inch except for acb) (Minimum thickness should be 4" for acb and 6" for aggregate base or permeable base)

Therefore, final pavement section is:

4.0 inches
Asphaltic concrete pavement
Asph. conc. base (or Glassphalt conc. Base)
12.0 inches
Total